Endorphins

Endorphins (contracted from endogenous morphine)[1][2][3] are peptides produced in the brain that block the perception of pain and increase feelings of wellbeing. They are produced and stored in the pituitary gland of the brain. Endorphins are endogenous painkillers often produced in the brain and adrenal medulla during physical exercise or orgasm and inhibit pain, muscle cramps, and relieve stress.[4][5][6][7]

  1. ^ Stefano GB, Ptáček R, Kuželová H, Kream RM (1515). "Endogenous morphine: up-to-date review 2011" (PDF). Folia Biologica. 58 (2): 49–56. PMID 22578954. Positive evolutionary pressure has apparently preserved the ability to synthesize chemically authentic morphine, albeit in homeopathic concentrations, throughout animal phyla. ... The apparently serendipitous finding of an opiate alkaloid-sensitive, opioid peptide-insensitive, µ3 opiate receptor subtype expressed by invertebrate immunocytes, human blood monocytes, macrophage cell lines, and human blood granulocytes provided compelling validating evidence for an autonomous role of endogenous morphine as a biologically important cellular signalling molecule (Stefano et al., 1993; Cruciani et al., 1994; Stefano and Scharrer, 1994; Makman et al., 1995). ... Human white blood cells have the ability to make and release morphine
  2. ^ "μ receptor". IUPHAR/BPS Guide to PHARMACOLOGY. International Union of Basic and Clinical Pharmacology. 15 March 2017. Retrieved 28 December 2017. Comments: β-Endorphin is the highest potency endogenous ligand ... Morphine occurs endogenously.
  3. ^ Poeaknapo C, Schmidt J, Brandsch M, Dräger B, Zenk MH (September 2004). "Endogenous formation of morphine in human cells". Proceedings of the National Academy of Sciences of the United States of America. 101 (39): 14091–14096. Bibcode:2004PNAS..10114091P. doi:10.1073/pnas.0405430101. PMC 521124. PMID 15383669.
  4. ^ Pilozzi A, Carro C, Huang X (December 2020). "Roles of β-Endorphin in Stress, Behavior, Neuroinflammation, and Brain Energy Metabolism". International Journal of Molecular Sciences. 22 (1): 338. doi:10.3390/ijms22010338. PMC 7796446. PMID 33396962.
  5. ^ Howlett TA, Tomlin S, Ngahfoong L, Rees LH, Bullen BA, Skrinar GS, McArthur JW (June 1984). "Release of beta endorphin and met-enkephalin during exercise in normal women: response to training". British Medical Journal. 288 (6435): 1950–1952. doi:10.1136/bmj.288.6435.1950. PMC 1442192. PMID 6329401.
  6. ^ Goldfarb AH, Jamurtas AZ (July 1997). "Beta-endorphin response to exercise. An update". Sports Medicine. 24 (1): 8–16. doi:10.2165/00007256-199724010-00002. PMID 9257407. S2CID 72824962.
  7. ^ "Endorphins: What They Are and How to Boost Them". Cleveland Clinic. Retrieved 25 March 2023.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search