Endothermic process

An endothermic process is a chemical or physical process that absorbs heat from its surroundings. In terms of thermodynamics and thermochemistry, it is a thermodynamic process with an increase in the enthalpy H (or internal energy U) of the system.[1] In an endothermic process, the heat that a system absorbs is thermal energy transfer into the system. Thus, an endothermic reaction generally leads to an increase in the temperature of the system and a decrease in that of the surroundings.

The term was coined by 19th-century French chemist Marcellin Berthelot. The term endothermic comes from the Greek ἔνδον (endon) meaning 'within' and θερμ- (therm) meaning 'hot' or 'warm'.

An endothermic process may be a chemical process, such as dissolving ammonium nitrate (NH4NO3) in water (H2O), or a physical process, such as the melting of ice cubes.

The opposite of an endothermic process is an exothermic process, one that releases or "gives out" energy, usually in the form of heat and sometimes as electrical energy. Thus, endo in endothermic refers to energy or heat going in, and exo in exothermic refers to energy or heat going out. In each term (endothermic and exothermic) the prefix refers to where heat (or electrical energy) goes as the process occurs.

  1. ^ Oxtoby, D. W; Gillis, H.P., Butler, L. J. (2015). Principle of Modern Chemistry, Brooks Cole. p. 617. ISBN 978-1305079113

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search