Five-qubit error correcting code

Quantum circuit that measures stabilizers in the five qubit error correcting code

The five-qubit error correcting code or the [[5,1,3]] code, is the smallest quantum error correcting code that can protect a logical qubit from any arbitrary single qubit error.[1] In this code, 5 physical qubits are used to encode the logical qubit.[2] With and being Pauli matrices and the Identity matrix, this code's generators are . Its logical operators are and .[3] Once the logical qubit is encoded, errors on the physical qubits can be detected via stabilizer measurements. A lookup table that maps the results of the stabilizer measurements to the types and locations of the errors gives the control system of the quantum computer enough information to correct errors.[4]

  1. ^ Gottesman, Daniel (2009). "An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation". arXiv:0904.2557 [quant-ph].
  2. ^ Knill, E.; Laflamme, R.; Martinez, R.; Negrevergne, C. (2001). "Benchmarking Quantum Computers: The Five-Qubit Error Correcting Code". Phys. Rev. Lett. 86 (25). American Physical Society: 5811–5814. arXiv:quant-ph/0101034. Bibcode:2001PhRvL..86.5811K. doi:10.1103/PhysRevLett.86.5811. PMID 11415364. S2CID 119440555.
  3. ^ D. Gottesman (1997). "Stabilizer Codes and Quantum Error Correction". arXiv:quant-ph/9705052.
  4. ^ Roffe, Joschka (2019). "Quantum error correction: an introductory guide". Contemporary Physics. 60 (3). Taylor & Francis: 226–245. arXiv:1907.11157. Bibcode:2019ConPh..60..226R. doi:10.1080/00107514.2019.1667078. S2CID 198893630.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search