Fuel economy in automobiles

Fuel consumption monitor from a 2006 Honda Airwave. The displayed fuel economy is 18.1 km/L (5.5 L/100 km; 43 mpg‑US).
A Briggs and Stratton Flyer from 1916. Originally an experiment in creating a fuel-saving automobile in the United States, the vehicle weighed only 135 lb (61.2 kg) and was an adaptation of a small gasoline engine originally designed to power a bicycle.[1]

The fuel economy of an automobile relates to the distance traveled by a vehicle and the amount of fuel consumed. Consumption can be expressed in terms of the volume of fuel to travel a distance, or the distance traveled per unit volume of fuel consumed. Since fuel consumption of vehicles is a significant factor in air pollution, and since the importation of motor fuel can be a large part of a nation's foreign trade, many countries impose requirements for fuel economy.

Different methods are used to approximate the actual performance of the vehicle. The energy in fuel is required to overcome various losses (wind resistance, tire drag, and others) encountered while propelling the vehicle, and in providing power to vehicle systems such as ignition or air conditioning. Various strategies can be employed to reduce losses at each of the conversions between the chemical energy in the fuel and the kinetic energy of the vehicle. Driver behavior can affect fuel economy; maneuvers such as sudden acceleration and heavy braking waste energy.

Electric cars do not directly burn fuel, and so do not have fuel economy per se, but equivalence measures, such as miles per gallon gasoline equivalent have been created to attempt to compare them.

  1. ^ Page, Walter Hines; Page, Arthur Wilson (1916). "Man and His Machines". The World's Work. Vol. XXXIII. Garden City, New York: Doubleday, Page & Co.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search