Functional MRI imaging methods have allowed researchers to combine neurocognitive testing with structural neuroanatomical measures, consider cognitive and affective paradigms, and create computer-aided diagnosis techniques and algorithms.[1][2] Functional MRI has several benefits, such as its non-invasive quality, relatively high spatial resolution, and decent temporal resolution. This is due the influential development in the scanner hardware, where it now allows for technicians to retrieve higher resolution images in a shorter amount of time. Additionally, there has been an improved motion correction and harmonization, which both aid in the generalizability and replication of findings in schizophrenia research.[3] Recent studies have used fMRI to explore specific brain networks, such as the salience network and default mode network, to understand their roles in schizophrenia-related symptoms. Alterations in these networks may affect self-referential thoughts and responses to external stimuli, potentially contributing to symptoms like hallucinations and disorganized thinking.[4] One particular method used in recent research is resting-state functional magnetic resonance imaging, rs-fMRI.
In a 'reformulation' of the binary-risk vulnerability model, researchers have suggested a multiple-hit hypothesis that utilizes several risk factors — some bestowing a greater probability than others — to identify at-risk individuals, often genetically predisposed to schizophrenia.[5] The process of defining clinical criteria of schizophrenia for early diagnosis has posed a great challenge for scientists.[6]