Genetic correlation

In multivariate quantitative genetics, a genetic correlation (denoted or ) is the proportion of variance that two traits share due to genetic causes,[1][2][3] the correlation between the genetic influences on a trait and the genetic influences on a different trait[4][5][6][7][8][9] estimating the degree of pleiotropy or causal overlap. A genetic correlation of 0 implies that the genetic effects on one trait are independent of the other, while a correlation of 1 implies that all of the genetic influences on the two traits are identical. The bivariate genetic correlation can be generalized to inferring genetic latent variable factors across > 2 traits using factor analysis. Genetic correlation models were introduced into behavioral genetics in the 1970s–1980s.

Genetic correlations have applications in validation of genome-wide association study (GWAS) results, breeding, prediction of traits, and discovering the etiology of traits & diseases.

They can be estimated using individual-level data from twin studies and molecular genetics, or even with GWAS summary statistics.[10][11] Genetic correlations have been found to be common in non-human genetics[12] and to be broadly similar to their respective phenotypic correlations,[13] and also found extensively in human traits, dubbed the 'phenome'.[14][15][16][17][18][19][20][21][22][23][24]

This finding of widespread pleiotropy has implications for artificial selection in agriculture, interpretation of phenotypic correlations, social inequality,[25] attempts to use Mendelian randomization in causal inference,[26][27][28][29] the understanding of the biological origins of complex traits, and the design of GWASes.

A genetic correlation is to be contrasted with environmental correlation between the environments affecting two traits (e.g. if poor nutrition in a household caused both lower IQ and height); a genetic correlation between two traits can contribute to the observed (phenotypic) correlation between two traits, but genetic correlations can also be opposite observed phenotypic correlations if the environment correlation is sufficiently strong in the other direction, perhaps due to tradeoffs or specialization.[30][31] The observation that genetic correlations usually mirror phenotypic correlations is known as "Cheverud's Conjecture"[32] and has been confirmed in animals[33][34] and humans, and showed they are of similar sizes;[35] for example, in the UK Biobank, of 118 continuous human traits, only 29% of their intercorrelations have opposite signs,[23] and a later analysis of 17 high-quality UKBB traits reported correlation near-unity.[36]

  1. ^ Falconer, Ch. 19
  2. ^ Lynch, M. and Walsh, B. (1998) Genetics and Analysis of Quantitative Traits, Sinauer,Ch21, "Correlations Between Characters", "Ch25, Threshold Characters" ISBN 9780878934812
  3. ^ Neale & Maes (1996), Methodology for genetics studies of twins and families Archived 2017-03-27 at the Wayback Machine (6th ed.). Dordrecht, The Netherlands: Kluwer.
  4. ^ Plomin et al., p. 123
  5. ^ Martin, N. G.; Eaves, L. J. (1977). "The genetical analysis of covariance structure" (PDF). Heredity. 38 (1): 79–95. doi:10.1038/hdy.1977.9. PMID 268313. S2CID 12600152. Archived from the original (PDF) on 2016-10-25.
  6. ^ Eaves, L. J.; Last, K. A.; Young, P. A.; Martin, N. G. (1978). "Model-fitting approaches to the analysis of human behaviour". Heredity. 41 (3): 249–320. doi:10.1038/hdy.1978.101. PMID 370072. S2CID 302717.
  7. ^ Loehlin & Vandenberg (1968) "Genetic and environmental components in the covariation of cognitive abilities: An additive model", in Progress in Human Behaviour Genetics, ed. S. G. Vandenberg, pp. 261–278. Johns Hopkins, Baltimore.
  8. ^ Purcell, S.; Sham, P. (2002). "Variance components models for gene-environment interaction in quantitative trait locus linkage analysis". Twin Research. 5 (6): 572–6. doi:10.1375/136905202762342035. PMID 12573188.
  9. ^ Kohler, H. P.; Behrman, J. R.; Schnittker, J. (2011). "Social Science Methods for Twins Data: Integrating Causality, Endowments and Heritability". Biodemography and Social Biology. 57 (1): 88–141. doi:10.1080/19485565.2011.580619. PMC 3158495. PMID 21845929.
  10. ^ Bulik-Sullivan, Brendan; Finucane, Hilary K.; Anttila, Verneri; Gusev, Alexander; Day, Felix R.; Loh, Po-Ru; Duncan, Laramie; Perry, John R. B.; Patterson, Nick; Robinson, Elise B.; Daly, Mark J. (November 2015). "An atlas of genetic correlations across human diseases and traits". Nature Genetics. 47 (11): 1236–1241. doi:10.1038/ng.3406. PMC 4797329. PMID 26414676.
  11. ^ Ning, Zheng; Pawitan, Yudi; Shen, Xia (August 2020). "High-definition likelihood inference of genetic correlations across human complex traits" (PDF). Nature Genetics. 52 (8): 859–864. doi:10.1038/s41588-020-0653-y. hdl:10616/47311. PMID 32601477. S2CID 220260262.
  12. ^ Wagner, G. P.; Zhang, J. (2011). "The pleiotropic structure of the genotype-phenotype map: The evolvability of complex organisms" (PDF). Nature Reviews. Genetics. 12 (3): 204–13. doi:10.1038/nrg2949. PMID 21331091. S2CID 8612268.[dead link]
  13. ^ Cheverud, James M. (1988). "A Comparison of Genetic and Phenotypic Correlations". Evolution. 42 (5): 958–968. doi:10.2307/2408911. JSTOR 2408911. PMID 28581166.
  14. ^ Krapohl, E.; Euesden, J.; Zabaneh, D.; Pingault, J. B.; Rimfeld, K.; von Stumm, S.; Dale, P. S.; Breen, G.; O'Reilly, P. F.; Plomin, R. (2016). "Phenome-wide analysis of genome-wide polygenic scores" (PDF). Molecular Psychiatry. 21 (9): 1188–93. doi:10.1038/mp.2015.126. PMC 4767701. PMID 26303664. Archived from the original (PDF) on 2017-02-02. Retrieved 2016-10-24.
  15. ^ Hagenaars, S. P.; Harris, S. E.; Davies, G.; Hill, W. D.; Liewald, D C M.; Ritchie, S. J.; Marioni, R. E.; Fawns-Ritchie, C.; Cullen, B.; Malik, R.; Worrall, B. B.; Sudlow, C L M.; Wardlaw, J. M.; Gallacher, J.; Pell, J.; McIntosh, A. M.; Smith, D. J.; Gale, C. R.; Deary, I. J.; Gale, C. R.; Deary, I. J. (2016). "Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N=112 151) and 24 GWAS consortia". Molecular Psychiatry. 21 (11): 1624–1632. doi:10.1038/mp.2015.225. PMC 5078856. PMID 26809841.
  16. ^ Hill, W. D.; Hagenaars, S. P.; Marioni, R. E.; Harris, S. E.; Liewald DCM; Davies, G.; Okbay, A.; McIntosh, A. M.; Gale, C. R.; Deary, I. J. (2016). "Molecular genetic contributions to social deprivation and household income in UK Biobank (n=112,151)". Current Biology. 26 (22): 3083–3089. doi:10.1016/j.cub.2016.09.035. PMC 5130721. PMID 27818178.
  17. ^ Zheng, Jie; Erzurumluoglu, A. Mesut; Elsworth, Benjamin L.; Kemp, John P.; Howe, Laurence; Haycock, Philip C.; Hemani, Gibran; Tansey, Katherine; Laurin, Charles; Pourcain, Beate St.; Warrington, Nicole M.; Finucane, Hilary K.; Price, Alkes L.; Bulik-Sullivan, Brendan K.; Anttila, Verneri; Paternoster, Lavinia; Gaunt, Tom R.; Evans, David M.; Neale, Benjamin M.; Neale, B. M. (2017). "LD Hub: A centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis". Bioinformatics. 33 (2): 272–279. doi:10.1093/bioinformatics/btw613. PMC 5542030. PMID 27663502.
  18. ^ Sivakumaran, Shanya; Agakov, Felix; Theodoratou, Evropi; Prendergast, James G.; Zgaga, Lina; Manolio, Teri; Rudan, Igor; McKeigue, Paul; Wilson, James F.; Campbell, Harry (2011). "Abundant pleiotropy in human complex diseases and traits". The American Journal of Human Genetics. 89 (5): 607–618. doi:10.1016/j.ajhg.2011.10.004. PMC 3213397. PMID 22077970.
  19. ^ Cite error: The named reference Solovieff2013 was invoked but never defined (see the help page).
  20. ^ Cotsapas, Chris; Voight, Benjamin F.; Rossin, Elizabeth; Lage, Kasper; Neale, Benjamin M.; Wallace, Chris; Abecasis, Gonçalo R.; Barrett, Jeffrey C.; Behrens, Timothy; Cho, Judy; De Jager, Philip L.; Elder, James T.; Graham, Robert R.; Gregersen, Peter; Klareskog, Lars; Siminovitch, Katherine A.; Van Heel, David A.; Wijmenga, Cisca; Worthington, Jane; Todd, John A.; Hafler, David A.; Rich, Stephen S.; Daly, Mark J.; FOCiS Network of Consortia (2011). "Pervasive sharing of genetic effects in autoimmune disease". PLOS Genetics. 7 (8): e1002254. doi:10.1371/journal.pgen.1002254. PMC 3154137. PMID 21852963.
  21. ^ Chambers, J. C.; Zhang, W.; Sehmi, J.; Li, X.; Wass, M. N.; Van Der Harst, P.; Holm, H.; Sanna, S.; Kavousi, M.; Baumeister, S. E.; Coin, L. J.; Deng, G.; Gieger, C.; Heard-Costa, N. L.; Hottenga, J. J.; Kühnel, B.; Kumar, V.; Lagou, V.; Liang, L.; Luan, J.; Vidal, P. M.; Leach, I. M.; O'Reilly, P. F.; Peden, J. F.; Rahmioglu, N.; Soininen, P.; Speliotes, E. K.; Yuan, X.; Thorleifsson, G.; et al. (2011). "Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma". Nature Genetics. 43 (11): 1131–1138. doi:10.1038/ng.970. PMC 3482372. PMID 22001757.
  22. ^ Hemani, Gibran; Bowden, Jack; Haycock, Philip; Zheng, Jie; Davis, Oliver; Flach, Peter; Gaunt, Tom; Smith, George Davey (2017). "Automating Mendelian randomization through machine learning to construct a putative causal map of the human phenome". doi:10.1101/173682. S2CID 8865889. {{cite journal}}: Cite journal requires |journal= (help)
  23. ^ a b Canela-Xandri, Oriol; Rawlik, Konrad; Tenesa, Albert (2018). "An atlas of genetic associations in UK Biobank". Nature Genetics. 50 (11): 1593–1599. doi:10.1038/s41588-018-0248-z. PMC 6707814. PMID 30349118.
  24. ^ Socrates, Adam; Bond, Tom; Karhunen, Ville; Auvinen, Juha; Rietveld, Cornelius A.; Veijola, Juha; Jarvelin, Marjo-Riitta; o'Reilly, Paul F. (2017). "Polygenic risk scores applied to a single cohort reveal pleiotropy among hundreds of human phenotypes". doi:10.1101/203257. S2CID 90474334. {{cite journal}}: Cite journal requires |journal= (help)
  25. ^ Mõttus, René; Marioni, Riccardo; Deary, Ian J. (2017). "Markers of Psychological Differences and Social and Health Inequalities: Possible Genetic and Phenotypic Overlaps". Journal of Personality. 85 (1): 104–117. doi:10.1111/jopy.12220. hdl:20.500.11820/6ea2bc27-6ce8-4cab-8efa-17a19437941c. PMID 26292196.
  26. ^ Burgess, S.; Butterworth, A. S.; Thompson, J. R. (2016). "Beyond Mendelian randomization: how to interpret evidence of shared genetic predictors". Journal of Clinical Epidemiology. 69: 208–216. doi:10.1016/j.jclinepi.2015.08.001. PMC 4687951. PMID 26291580.
  27. ^ Hagenaars, Saskia P.; Gale, Catharine R.; Deary, Ian J.; Harris, Sarah E. (2017). "Cognitive ability and physical health: A Mendelian randomization study". Scientific Reports. 7 (1): 2651. Bibcode:2017NatSR...7.2651H. doi:10.1038/s41598-017-02837-3. PMC 5453939. PMID 28572633.
  28. ^ Bowden, J.; Davey Smith, G.; Burgess, S. (2015). "Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression". International Journal of Epidemiology. 44 (2): 512–525. doi:10.1093/ije/dyv080. PMC 4469799. PMID 26050253.
  29. ^ Verbanck, Marie; Chen, Chia-Yen; Neale, Benjamin; Do, Ron (2018). "Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases". Nature Genetics. 50 (5): 693–698. doi:10.1038/s41588-018-0099-7. PMC 6083837. PMID 29686387.
  30. ^ Falconer, p. 315 cites the example of chicken size and egg laying: chickens grown large for genetic reasons lay later, fewer, and larger eggs, while chickens grown large for environmental reasons lay quicker and more but normal sized eggs; Table 19.1 on p. 316 also provides examples of opposite-signed phenotypic & genetic correlations: fleece-weight/length-of-wool & fleece weight/body-weight in sheep, and body-weight/egg-timing & body-weight/egg-production in chicken. One consequence of the negative chicken correlations was that, despite moderate heritabilities and a positive phenotypic correlation, selection had begun to fail to yield any improvements (p. 329) according to "Genetic slippage in response to selection for multiple objectives", Dickerson 1955.
  31. ^ Kruuk, Loeske E. B.; Slate, Jon; Pemberton, Josephine M.; Brotherstone, Sue; Guinness, Fiona; Clutton-Brock, Tim (2002). "Antler Size in Red Deer: Heritability and Selection but No Evolution". Evolution. 56 (8): 1683–95. doi:10.1111/j.0014-3820.2002.tb01480.x. PMID 12353761. S2CID 33699313.
  32. ^ Cheverud, James M. (1988). "A comparison of genetic and phenotypic correlations". Evolution. 42 (5): 958–968. doi:10.1111/j.1558-5646.1988.tb02514.x. PMID 28581166. S2CID 21190284.
  33. ^ Roff, Derek A. (1995). "The estimation of genetic correlations from phenotypic correlations – a test of Cheverud's conjecture". Heredity. 74 (5): 481–490. doi:10.1038/hdy.1995.68. S2CID 32644733.
  34. ^ Kruuk, Loeske E.B.; Slate, Jon; Wilson, Alastair J. (2008). "New answers for old questions: The evolutionary quantitative genetics of wild animal populations" (PDF). Annual Review of Ecology, Evolution, and Systematics. 39: 525–548. doi:10.1146/annurev.ecolsys.39.110707.173542. S2CID 86659038. Archived from the original (PDF) on 2019-07-21.
  35. ^ Dochtermann, Ned A. (2011). "Testing Cheverud's conjecture for behavioral correlations and behavioral syndromes". Evolution. 65 (6): 1814–1820. doi:10.1111/j.1558-5646.2011.01264.x. PMID 21644966. S2CID 21760916.
  36. ^ Sodini, Sebastian M.; Kemper, Kathryn E.; Wray, Naomi R.; Trzaskowski, Maciej (2018). "Comparison of Genotypic and Phenotypic Correlations: Cheverud's Conjecture in Humans". Genetics. 209 (3): 941–948. doi:10.1534/genetics.117.300630. PMC 6028255. PMID 29739817. S2CID 13668940.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search