In condensed matter physics, geometrical frustration (or in short, frustration) is a phenomenon where the combination of conflicting inter-atomic forces leads to complex structures. Frustration can imply a plenitude of distinct ground states at zero temperature, and usual thermal ordering may be suppressed at higher temperatures. Much-studied examples include amorphous materials, glasses, and dilute magnets.
The term frustration, in the context of magnetic systems, was introduced by Gerard Toulouse in 1977.[1][2] Frustrated magnetic systems had been studied even before. Early work includes a study of the Ising model on a triangular lattice with nearest-neighbor spins coupled antiferromagnetically, by G. H. Wannier, published in 1950.[3] Related features occur in magnets with competing interactions, where both ferromagnetic as well as antiferromagnetic couplings between pairs of spins or magnetic moments are present, with the type of interaction depending on the separation distance of the spins. In that case commensurability, such as helical spin arrangements may result, as had been discussed originally, especially, by A. Yoshimori,[4] T. A. Kaplan,[5] R. J. Elliott,[6] and others, starting in 1959, to describe experimental findings on rare-earth metals. A renewed interest in such spin systems with frustrated or competing interactions arose about two decades later, beginning in the 1970s, in the context of spin glasses and spatially modulated magnetic superstructures. In spin glasses, frustration is augmented by stochastic disorder in the interactions, as may occur experimentally in non-stoichiometric magnetic alloys. Carefully analyzed spin models with frustration include the Sherrington–Kirkpatrick model,[7] describing spin glasses, and the ANNNI model,[8] describing commensurable magnetic superstructures. Recently, the concept of frustration has been used in brain network analysis to identify the non-trivial assemblage of neural connections and highlight the adjustable elements of the brain.[9]
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search