Graph product

In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G1 and G2 and produces a graph H with the following properties:

  • The vertex set of H is the Cartesian product V(G1) × V(G2), where V(G1) and V(G2) are the vertex sets of G1 and G2, respectively.
  • Two vertices (a1,a2) and (b1,b2) of H are connected by an edge, iff a condition about a1, b1 in G1 and a2, b2 in G2 is fulfilled.

The graph products differ in what exactly this condition is. It is always about whether or not the vertices an, bn in Gn are equal or connected by an edge.

The terminology and notation for specific graph products in the literature varies quite a lot; even if the following may be considered somewhat standard, readers are advised to check what definition a particular author uses for a graph product, especially in older texts.

Even for more standard definitions, it is not always consistent in the literature how to handle self-loops. The formulas below for the number of edges in a product also may fail when including self-loops. For example, the tensor product of a single vertex self-loop with itself is another single vertex self-loop with , and not as the formula would suggest.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search