Great American Interchange

Examples of migrant species in both Americas. Olive green silhouettes denote North American species with South American ancestors; blue silhouettes denote South American species with North American ancestors.

The Great American Biotic Interchange (commonly abbreviated as GABI), also known as the Great American Interchange and the Great American Faunal Interchange, was an important late Cenozoic paleozoogeographic biotic interchange event in which land and freshwater fauna migrated from North America to South America via Central America and vice versa, as the volcanic Isthmus of Panama rose up from the sea floor and bridged the formerly separated continents. Although earlier dispersals had occurred, probably over water, the migration accelerated dramatically about 2.7 million years (Ma) ago during the Piacenzian age.[1] It resulted in the joining of the Neotropic (roughly South American) and Nearctic (roughly North American) biogeographic realms definitively to form the Americas. The interchange is visible from observation of both biostratigraphy and nature (neontology). Its most dramatic effect is on the zoogeography of mammals, but it also gave an opportunity for reptiles, amphibians, arthropods, weak-flying or flightless birds, and even freshwater fish to migrate. Coastal and marine biota, however, were affected in the opposite manner; the formation of the Central American Isthmus caused what has been termed the Great American Schism, with significant diversification and extinction occurring as a result of the isolation of the Caribbean from the Pacific.[2]

The occurrence of the interchange was first discussed in 1876 by the "father of biogeography", Alfred Russel Wallace.[3][4] Wallace had spent five years exploring and collecting specimens in the Amazon basin. Others who made significant contributions to understanding the event in the century that followed include Florentino Ameghino, W. D. Matthew, W. B. Scott, Bryan Patterson, George Gaylord Simpson and S. David Webb.[5] The Pliocene timing of the formation of the connection between North and South America was discussed in 1910 by Henry Fairfield Osborn.[6]

Analogous interchanges occurred earlier in the Cenozoic, when the formerly isolated land masses of India and Africa made contact with Eurasia about 56 and 30 Ma ago, respectively.[7][8][9][10][11][12][13][14][15][16][17][excessive citations]

  1. ^ O'Dea, A.; Lessios, H. A.; Coates, A. G.; et al. (2016). "Formation of the Isthmus of Panama". Science Advances. 2 (8): e1600883. Bibcode:2016SciA....2E0883O. doi:10.1126/sciadv.1600883. PMC 4988774. PMID 27540590.
  2. ^ Cite error: The named reference Lessios was invoked but never defined (see the help page).
  3. ^ Wallace, Alfred Russel (1876). The Geographical Distribution of Animals. With a Study of the Relations of Living and Extinct Faunas as Elucidating the Past Changes of the Earth's Surface. Vol. 1. New York: Harper and Brothers. OCLC 556393.
  4. ^ Wallace, Alfred Russel (1876). Ibid.. Vol. 2. New York: Harper and Brothers. OCLC 556393.
  5. ^ Marshall, L. G. (July–August 1988). "Land Mammals and the Great American Interchange" (PDF). American Scientist. 76 (4): 380–388. Bibcode:1988AmSci..76..380M. Archived (PDF) from the original on 2013-03-02. Retrieved 2014-04-22.
  6. ^ Osborn, H. (1910). The Age Of Mammals In Europe, Asia, And North America. New York, EEUU: The Macmillan Company. pp. 80–81.
  7. ^ Karanth, K. Praveen (2006-03-25). "Out-of-India Gondwanan origin of some tropical Asian biota" (PDF). Current Science. 90 (6): 789–792. Retrieved 2008-12-29.
  8. ^ Clementz, Mark; Bajpai, S.; Ravikant, V.; Thewissen, J. G. M.; Saravanan, N.; Singh, I. B.; Prasad, V. (1 January 2011). "Early Eocene warming events and the timing of terrestrial faunal exchange between India and Asia". Geology. 39 (1): 15–18. Bibcode:2011Geo....39...15C. doi:10.1130/G31585.1. Retrieved 28 August 2022.
  9. ^ Rose, Kenneth D.; Rana, Rajendra S.; Sahni, Ashok; Kumar, Kishor; Singh, Lachham; Smith, Thierry (1 June 2009). "First Tillodont from India: Additional Evidence for an Early Eocene Faunal Connection between Europe and India?". Acta Palaeontologica Polonica. 54 (2): 351–355. doi:10.4202/app.2008.0067. S2CID 129644411.
  10. ^ Das, Debasis P.; Carolin, Nora; Bajpai, Sunil (22 Aug 2021). "A nyctitheriid insectivore (Eulipotyphla, Mammalia) of Asian affinity from the early Eocene of India". Historical Biology. 34 (7): 1157–1165. doi:10.1080/08912963.2021.1966002. S2CID 238735010. Retrieved 28 August 2022.
  11. ^ Rana, Rajendra S.; Kumar, Kishor; Escarguel, Gilles; Sahni, Ashok; Rose, Kenneth D.; Smith, Thierry; Singh, Hukam; Singh, Lachham (1 March 2008). "An Ailuravine Rodent from the Lower Eocene Cambay Formation at Vastan, Western India, and Its Palaeobiogeographic Implications". Acta Palaeontologica Polonica. 53 (1): 1–14. doi:10.4202/app.2008.0101. S2CID 56382943.
  12. ^ Li, Fengyuan; Shao, Lili; Li, Shuqiang (3 February 2020). "Tropical Niche Conservatism Explains the Eocene Migration from India to Southeast Asia in Ochyroceratid Spiders". Systematic Biology. 69 (5): 987–998. doi:10.1093/sysbio/syaa006. PMID 32011715. Retrieved 28 August 2022.
  13. ^ Ali, Jason R.; Aitchison, Jonathan C. (June 2008). "Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma)". Earth-Science Reviews. 88 (3–4): 145–166. Bibcode:2008ESRv...88..145A. doi:10.1016/j.earscirev.2008.01.007. Retrieved 28 August 2022.
  14. ^ Dutta, Suryendu; Tripathi, Suryakant M.; Mallick, Monalisa; Mathews, Runcie P.; Greenwood, Paul F.; Rao, Mulagalapalli R.; Summons, Roger E. (July 2011). "Eocene out-of-India dispersal of Asian dipterocarps". Review of Palaeobotany and Palynology. 166 (1–2): 63–68. Bibcode:2011RPaPa.166...63D. doi:10.1016/j.revpalbo.2011.05.002. Retrieved 28 August 2022.
  15. ^ Kapur, Vivesh V.; Carolin, N.; Bajpai, S. (2022). "Early Paleogene mammal faunas of India: a review of recent advances with implications for the timing of initial India-Asia contact". Himalayan Geology. 47 (1B): 337–356. Retrieved 28 August 2022.
  16. ^ Hedges, S. Blair (2001-01-02). "Afrotheria: Plate tectonics meets genomics". Proceedings of the National Academy of Sciences. 98 (1): 1–2. Bibcode:2001PNAS...98....1H. doi:10.1073/pnas.98.1.1. PMC 33345. PMID 11136239.
  17. ^ Kappelman, John; Rasmussen, D. Tab; Sanders, William J.; Feseha, Mulugeta; Bown, Thomas; Copeland, Peter; Crabaugh, Jeff; Fleagle, John; Glantz, Michelle; Gordon, Adam; Jacobs, Bonnie; Maga, Murat; Muldoon, Kathleen; Pan, Aaron; Pyne, Lydia; Richmond, Brian; Ryan, Timothy; Seiffert, Erik R.; Sen, Sevket; Todd, Lawrence; Wiemann, Michael C.; Winkler, Alisa C. (4 December 2003). "Oligocene mammals from Ethiopia and faunal exchange between Afro-Arabia and Eurasia". Nature. 426 (6966): 549–552. Bibcode:2003Natur.426..549K. doi:10.1038/nature02102. hdl:2027.42/62496. PMID 14654838. S2CID 4336007. Retrieved 28 August 2022.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search