Green chemistry

Green chemistry, similar to sustainable chemistry or circular chemistry,[1] is an area of chemistry and chemical engineering focused on the design of products and processes that minimize or eliminate the use and generation of hazardous substances.[2] While environmental chemistry focuses on the effects of polluting chemicals on nature, green chemistry focuses on the environmental impact of chemistry, including lowering consumption of nonrenewable resources and technological approaches for preventing pollution.[3][4][5][6][7][8]

The overarching goals of green chemistry—namely, more resource-efficient and inherently safer design of molecules, materials, products, and processes—can be pursued in a wide range of contexts.

Definition

Green chemistry (sustainable chemistry): Design of chemical products and processes that minimize or eliminate the use or generation of substances hazardous to humans, animals, plants, and the environment. Note 1: Modified from ref.[9] to be more general.

Note 2: Green chemistry discusses the engineering concept of pollution prevention and zero waste both at laboratory and industrial scales. It encourages the use of economical and ecocompatible techniques that not only improve the yield but also bring down the cost of disposal of wastes at the end of a chemical process.[10]

  1. ^ Mutlu, Hatice; Barner, Leonie (2022-06-03). "Getting the Terms Right: Green, Sustainable, or Circular Chemistry?". Macromolecular Chemistry and Physics. 223 (13): 2200111. doi:10.1002/macp.202200111. ISSN 1022-1352. S2CID 249357642.
  2. ^ "Green Chemistry". United States Environmental Protection Agency. 2006-06-28. Retrieved 2011-03-23.
  3. ^ Sheldon, R. A.; Arends, I. W. C. E.; Hanefeld, U. (2007). Green Chemistry and Catalysis (PDF). doi:10.1002/9783527611003. ISBN 9783527611003. S2CID 92947071.
  4. ^ Clark, J. H.; Luque, R.; Matharu, A. S. (2012). "Green Chemistry, Biofuels, and Biorefinery". Annual Review of Chemical and Biomolecular Engineering. 3: 183–207. doi:10.1146/annurev-chembioeng-062011-081014. PMID 22468603.
  5. ^ Cernansky, R. (2015). "Chemistry: Green refill". Nature. 519 (7543): 379–380. doi:10.1038/nj7543-379a. PMID 25793239.
  6. ^ Sanderson, K. (2011). "Chemistry: It's not easy being green". Nature. 469 (7328): 18–20. Bibcode:2011Natur.469...18S. doi:10.1038/469018a. PMID 21209638.
  7. ^ Poliakoff, M.; Licence, P. (2007). "Sustainable technology: Green chemistry". Nature. 450 (7171): 810–812. Bibcode:2007Natur.450..810P. doi:10.1038/450810a. PMID 18064000. S2CID 12340643.
  8. ^ Clark, J. H. (1999). "Green chemistry: Challenges and opportunities". Green Chemistry. 1: 1–8. doi:10.1039/A807961G.
  9. ^ Marteel, Anne E.; Davies, Julian A.; Olson, Walter W.; Abraham, Martin A. (2003). "GREEN CHEMISTRY AND ENGINEERING: Drivers, Metrics, and Reduction to Practice". Annual Review of Environment and Resources. 28: 401–428. doi:10.1146/annurev.energy.28.011503.163459.
  10. ^ Vert, Michel; Doi, Yoshiharu; Hellwich, Karl-Heinz; Hess, Michael; Hodge, Philip; Kubisa, Przemyslaw; Rinaudo, Marguerite; Schué, François (2012). "Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)" (PDF). Pure and Applied Chemistry. 84 (2): 377–410. doi:10.1351/PAC-REC-10-12-04. S2CID 98107080.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search