Halting problem

In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. The halting problem is undecidable, meaning that no general algorithm exists that solves the halting problem for all possible program–input pairs.

A key part of the formal statement of the problem is a mathematical definition of a computer and program, usually via a Turing machine. The proof then shows, for any program f that might determine whether programs halt, that a "pathological" program g, called with some input, can pass its own source and its input to f and then specifically do the opposite of what f predicts g will do. No f can exist that handles this case, thus showing undecidability. This proof is significant to practical computing efforts, defining a class of applications which no programming invention can possibly perform perfectly.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search