Hearing protection fit-testing

Fit testing (MIRE)[1]

Hearing protector fit-testing is a method that measures the degree of noise reduction obtained from an individual wearing a particular hearing protection device (HPD) - for example, a noise canceling earplug or earmuff. Fit testing is necessary due to the fact that noise attenuation varies across individuals. It is important to note that attenuation can sometimes score as zero due to anatomical differences and inadequate training, as to the proper wear and use.[2] Labeled HPD attenuation values (for example, the Noise Reduction Rating, or NRR) are average values that cannot predict noise attenuation for an individual; in addition, they are based on laboratory measurements which may overestimate the noise reduction obtained in the real world.[3]

Hearing protection devices such as earplugs or earmuffs must be worn correctly for the wearer to be protected from noise.[4] Correct use of hearing protection includes:

  • Choosing the most appropriate hearing protection device, both with appropriate level of attenuation and appropriate fit for the individual.[5] Ideally, the device should limit the sound intensity that reaches the ear to levels below 85 dBA. If the attenuation does not limit the noise levels to that level, other alternatives should be sought. If the attenuation is greater than that, it can also interfere with the HPD use by making it difficult to hear important sounds.[6]
  • Wearing or inserting the hearing protection device correctly so it seals the wearer's ear canal, using the "roll-pull-hold" method for foam earplugs, and ensuring earmuffs create an unbroken seal around each ear.[7]

Fit-testing hearing protection can facilitate an appropriate choice of hearing protection, and allow for the professional administering the fit-test to train users on proper techniques for wear.[8][9][10][11][12][13]

  1. ^ Kah Heng Lee; Geza Benke; Dean Mckenzie (2022). "The efficacy of earplugs at a major hazard facility". Physical and Engineering Sciences in Medicine. 45 (1). Springler: 107–114. doi:10.1007/s13246-021-01087-y. ISSN 2662-4729. PMID 35023076. S2CID 221812245. Retrieved 2022-08-10.
  2. ^ Gong, Wei (2021). "Evaluating the effectiveness of earplugs in preventing noise-Induced hearing loss in an auto parts factory in China". International Journal of Environmental Research and Public Health. 18 (3): 7190. doi:10.3390/ijerph18137190. PMC 8297223. PMID 34281127.
  3. ^ Berger, Elliott H.; Voix, Jérémie (2018). "Chapter 11: Hearing Protection Devices". In D.K. Meinke; E.H. Berger; R. Neitzel; D.P. Driscoll; K. Bright (eds.). The Noise Manual (6th ed.). Falls Church, Virginia: American Industrial Hygiene Association. pp. 255–308. Retrieved 10 August 2022.
  4. ^ Ntlhakana L, Kanji A, Khoza-Shangase K (2015). "The use of hearing protection devices in South Africa: exploring the current status in a gold and a non-ferrous mine". Occupational Health Southern Africa. 21: 10–15.
  5. ^ Murphy WJ, Themann CL, Kardous CA, Byrne DC (2018-10-24). "Three Tips for Choosing the Right Hearing Protector". NIOSH Science Blog. Retrieved 2018-12-28.
  6. ^ Svensson EB, Morata TC, Nylén P, Krieg EF, Johnson AC (2004-11-11). "Beliefs and attitudes among Swedish workers regarding the risk of hearing loss". International Journal of Audiology. 43 (10): 585–93. doi:10.1080/14992020400050075. PMID 15724523. S2CID 1071009.
  7. ^ "Are your ears really protected? Find out with NIOSH's QuickFitWeb". NIOSH Science Blog. 2008-05-12. Retrieved 2018-12-28.
  8. ^ Witt B (October 2007). "Fit testing of hearing protectors". Occupational Health & Safety. 76 (10): 118, 120–2. PMID 17972707. Retrieved 2018-12-28.
  9. ^ Murphy WJ, Themann CL, Murata TK (November 2016). "Hearing protector fit testing with off-shore oil-rig inspectors in Louisiana and Texas". International Journal of Audiology. 55 (11): 688–98. doi:10.1080/14992027.2016.1204470. PMC 5333758. PMID 27414471.
  10. ^ Hager LD (2011). "Fit-testing hearing protectors: an idea whose time has come". Noise & Health. 13 (51): 147–51. doi:10.4103/1463-1741.77217. PMID 21368440.
  11. ^ Schulz TY (2011). "Individual fit-testing of earplugs: a review of uses". Noise & Health. 13 (51): 152–62. doi:10.4103/1463-1741.77216. PMID 21368441.
  12. ^ Smith PS, Monaco BA, Lusk SL (December 2014). "Attitudes toward use of hearing protection devices and effects of an intervention on fit-testing results". Workplace Health & Safety. 62 (12): 491–9. doi:10.3928/21650799-20140902-01. PMID 25207586. S2CID 45642267.
  13. ^ Gong W, Liu X, Liu Y, Li L (May 2019). "Evaluating the effect of training along with fit testing on foam earplug users in four factories in China". International Journal of Audiology. 58 (5): 269–277. doi:10.1080/14992027.2018.1563307. PMID 30880506. S2CID 81978766.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search