Helmholtz minimum dissipation theorem

In fluid mechanics, Helmholtz minimum dissipation theorem (named after Hermann von Helmholtz who published it in 1868[1][2]) states that the steady Stokes flow motion of an incompressible fluid has the smallest rate of dissipation than any other incompressible motion with the same velocity on the boundary.[3][4] The theorem also has been studied by Diederik Korteweg in 1883[5] and by Lord Rayleigh in 1913.[6]

This theorem is, in fact, true for any fluid motion where the nonlinear term of the incompressible Navier-Stokes equations can be neglected or equivalently when , where is the vorticity vector. For example, the theorem also applies to unidirectional flows such as Couette flow and Hagen–Poiseuille flow, where nonlinear terms disappear automatically.

  1. ^ Helmholtz, H. (1868). Verh. naturhist.-med. Ver. Wiss. Abh, 1, 223.
  2. ^ von Helmholtz, H. (1868). Zur Theorie der stationären Ströme in reibenden Flüssigkeiten. Verh. Naturh.-Med. Ver. Heidelb, 11, 223.
  3. ^ Lamb, H. (1932). Hydrodynamics. Cambridge university press.
  4. ^ Batchelor, G. K. (2000). An introduction to fluid dynamics. Cambridge university press.
  5. ^ Korteweg, D. J. (1883). XVII. On a general theorem of the stability of the motion of a viscous fluid. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 16(98), 112-118.
  6. ^ Rayleigh, L. (1913). LXV. On the motion of a viscous fluid. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 26(154), 776-786.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search