Helmholtz reciprocity

The Helmholtz reciprocity principle describes how a ray of light and its reverse ray encounter matched optical adventures, such as reflections, refractions, and absorptions in a passive medium, or at an interface. It does not apply to moving, non-linear, or magnetic media.

For example, incoming and outgoing light can be considered as reversals of each other,[1] without affecting the bidirectional reflectance distribution function (BRDF)[2] outcome. If light was measured with a sensor and that light reflected on a material with a BRDF that obeys the Helmholtz reciprocity principle one would be able to swap the sensor and light source and the measurement of flux would remain equal.

In the computer graphics scheme of global illumination, the Helmholtz reciprocity principle is important if the global illumination algorithm reverses light paths (for example raytracing versus classic light path tracing).

  1. ^ Hapke, B. (1993). Theory of Reflectance and Emittance Spectroscopy, Cambridge University Press, Cambridge UK, ISBN 0-521-30789-9, Section 10C, pages 263-264.
  2. ^ Hapke, B. (1993). Theory of Reflectance and Emittance Spectroscopy, Cambridge University Press, Cambridge UK, ISBN 0-521-30789-9, Chapters 8-9, pages 181-260.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search