A highly composite number is a positive integer that has more divisors than all smaller positive integers. If d(n) denotes the number of divisors of a positive integer n, then a positive integer N is highly composite if d(N) > d(n) for all n < N. For example, 6 is highly composite because d(6)=4, and for n=1,2,3,4,5, you get d(n)=1,2,2,3,2, respectively, which are all less than 4.
A related concept is that of a largely composite number, a positive integer that has at least as many divisors as all smaller positive integers. The name can be somewhat misleading, as the first two highly composite numbers (1 and 2) are not actually composite numbers; however, all further terms are.
Ramanujan wrote a paper on highly composite numbers in 1915.[1]
The mathematician Jean-Pierre Kahane suggested that Plato must have known about highly composite numbers as he deliberately chose such a number, 5040 (= 7!), as the ideal number of citizens in a city.[2] Furthermore, Vardoulakis and Pugh's paper delves into a similar inquiry concerning the number 5040.[3]
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search