Hybrid system

A hybrid system is a dynamical system that exhibits both continuous and discrete dynamic behavior – a system that can both flow (described by a differential equation) and jump (described by a state machine or automaton).[1] Often, the term "hybrid dynamical system" is used, to distinguish over hybrid systems such as those that combine neural nets and fuzzy logic, or electrical and mechanical drivelines. A hybrid system has the benefit of encompassing a larger class of systems within its structure, allowing for more flexibility in modeling dynamic phenomena.

In general, the state of a hybrid system is defined by the values of the continuous variables and a discrete mode. The state changes either continuously, according to a flow condition, or discretely according to a control graph. Continuous flow is permitted as long as so-called invariants hold, while discrete transitions can occur as soon as given jump conditions are satisfied. Discrete transitions may be associated with events.

  1. ^ Branicky, Michael S. (2005), Hristu-Varsakelis, Dimitrios; Levine, William S. (eds.), "Introduction to Hybrid Systems", Handbook of Networked and Embedded Control Systems, Boston, MA: Birkhäuser, pp. 91–116, doi:10.1007/0-8176-4404-0_5, ISBN 978-0-8176-4404-8, retrieved 2022-06-08

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search