In mathematical logic, the hypersequent framework is an extension of the proof-theoretical framework of sequent calculi used in structural proof theory to provide analytic calculi for logics that are not captured in the sequent framework. A hypersequent is usually taken to be a finite multiset of ordinary sequents, written

The sequents making up a hypersequent are called components. The added expressivity of the hypersequent framework is provided by rules manipulating different components, such as the communication rule for the intermediate logic LC (Gödel–Dummett logic)

or the modal splitting rule for the modal logic S5:[1]

Hypersequent calculi have been used to treat modal logics, intermediate logics, and substructural logics. Hypersequents usually have a formula interpretation, i.e., are interpreted by a formula in the object language, nearly always as some kind of disjunction. The precise formula interpretation depends on the considered logic.
- ^ Avron, Arnon (1996). "The method of hypersequents in the proof theory of propositional non-classical logics". Logic: From Foundations to Applications. pp. 1–32. ISBN 978-0-19-853862-2.