Kelvin probe force microscope

In Kelvin probe force microscopy, a conducting cantilever is scanned over a surface at a constant height in order to map the work function of the surface.
A typical scanning Kelvin probe (SKP) instrument. On the left is the control unit with lock-in amplifier and backing potential controller. On the right is the x, y, z scanning axis with vibrator, electrometer and probe mounted.

Kelvin probe force microscopy (KPFM), also known as surface potential microscopy, is a noncontact variant of atomic force microscopy (AFM).[1][2][3] By raster scanning in the x,y plane the work function of the sample can be locally mapped for correlation with sample features. When there is little or no magnification, this approach can be described as using a scanning Kelvin probe (SKP). These techniques are predominantly used to measure corrosion and coatings.

With KPFM, the work function of surfaces can be observed at atomic or molecular scales. The work function relates to many surface phenomena, including catalytic activity, reconstruction of surfaces, doping and band-bending of semiconductors, charge trapping in dielectrics and corrosion. The map of the work function produced by KPFM gives information about the composition and electronic state of the local structures on the surface of a solid.

  1. ^ M. Nonnenmacher; M. P. O'Boyle; H. K. Wickramasinghe (1991). "Kelvin probe force microscopy" (PDF). Appl. Phys. Lett. 58 (25): 2921. Bibcode:1991ApPhL..58.2921N. doi:10.1063/1.105227. Archived from the original (free-download pdf) on 2009-09-20.
  2. ^ Fujihira, Masamichi (1999). "Kelvin Probe Force Microscopy of Molecular Surfaces". Annual Review of Materials Science. 29 (1): 353–380. Bibcode:1999AnRMS..29..353F. doi:10.1146/annurev.matsci.29.1.353. ISSN 0084-6600.
  3. ^ Melitz, Wilhelm; Shen, Jian; Kummel, Andrew C.; Lee, Sangyeob (2011). "Kelvin probe force microscopy and its application". Surface Science Reports. 66 (1): 1–27. Bibcode:2011SurSR..66....1M. doi:10.1016/j.surfrep.2010.10.001. ISSN 0167-5729.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search