Koinophilia

This leucistic Indian peacock, Pavo cristatus, is unlikely to find a mate and reproduce in a natural setting due to its unusual coloration. However, its striking colour is appreciated by humans, and may be included in artificial selective breeding to produce more individuals with the leucistic phenotype.

Koinophilia is an evolutionary hypothesis proposing that during sexual selection, animals preferentially seek mates with a minimum of unusual or mutant features, including functionality, appearance and behavior.[1][2][3][4][5][6] Koinophilia intends to explain the clustering of sexual organisms into species and other issues described by Darwin's dilemma.[3][4][5] The term derives from the Greek word koinos meaning "common" or "that which is shared", and philia, meaning "fondness".

Natural selection causes beneficial inherited features to become more common at the expense of their disadvantageous counterparts. The koinophilia hypothesis proposes that a sexually-reproducing animal would therefore be expected to avoid individuals with rare or unusual features, and to prefer to mate with individuals displaying a predominance of common or average features.[2][3] Mutants with strange, odd or peculiar features would be avoided because most mutations that manifest themselves as changes in appearance, functionality or behavior are disadvantageous.[7] Because it is impossible to judge whether a new mutation is beneficial (or might be advantageous in the unforeseeable future) or not, koinophilic animals avoid them all, at the cost of avoiding the very occasional potentially beneficial mutation.[8] Thus, koinophilia, although not infallible in its ability to distinguish fit from unfit mates, is a good strategy when choosing a mate. A koinophilic choice ensures that offspring are likely to inherit a suite of features and attributes that have served all the members of the species well in the past.[3]

Koinophilia differs from the "like prefers like" mating pattern of assortative mating.[9][10] If like preferred like, leucistic animals (such as white peacocks) would be sexually attracted to one another, and a leucistic subspecies would come into being. Koinophilia predicts that this is unlikely because leucistic animals are attracted to the average in the same way as are all the other members of its species. Since non-leucistic animals are not attracted by leucism, few leucistic individuals find mates, and leucistic lineages will rarely form.

Koinophilia provides simple explanations for the almost universal canalization of sexual creatures into species,[3][4][5] the rarity of transitional forms between species (between both extant and fossil species),[3][4] evolutionary stasis, punctuated equilibria,[3][4][5] and the evolution of cooperation.[11][12] Koinophilia might also contribute to the maintenance of sexual reproduction, preventing its reversion to the much simpler asexual form of reproduction.[13][14]

The koinophilia hypothesis is supported by the findings of Judith Langlois and her co-workers.[2][15][16][17] They found that the average of two human faces was more attractive than either of the faces from which that average was derived.[18] The more faces (of the same gender and age) that were used in the averaging process the more attractive and appealing the average face became.[19] This work into averageness[2][15][16][20] supports koinophilia as an explanation of what constitutes a beautiful face.[17][21][22]

  1. ^ Symons, Donald (1979). The Evolution of Human Sexuality. New York: Oxford University Press. ISBN 978-0-19-502535-4. LCCN 78023361. OCLC 4494283.
  2. ^ a b c d Langlois, Judith H.; Roggman, Lori A. (1990). "Attractive faces are only average". Psychological Science. 1 (2): 115–121. doi:10.1111/j.1467-9280.1990.tb00079.x. ISSN 0956-7976. S2CID 18557871.
  3. ^ a b c d e f g Koeslag, Johan H. (1990). "Koinophilia groups sexual creatures into species, promotes stasis, and stabilizes social behaviour". Journal of Theoretical Biology. 144 (1): 15–35. Bibcode:1990JThBi.144...15K. doi:10.1016/s0022-5193(05)80297-8. ISSN 0022-5193. PMID 2200930.
  4. ^ a b c d e Koeslag, Johan H. (1995). "On the engine of speciation". Journal of Theoretical Biology. 177 (4): 401–409. Bibcode:1995JThBi.177..401K. doi:10.1006/jtbi.1995.0256. ISSN 0022-5193.
  5. ^ a b c d Miller, William B. (2013). "What is the big deal about evolutionary gaps?". In: The Microcosm within: Evolution and Extinction in the Hologenome. Boca Raton, Florida: Universal Publishers. pp. 177, 395–396. ISBN 978-1-61233-2772.
  6. ^ Unnikrishnan, M. K. (2012). "Koinophilia revisited: the evolutionary link between mate selection and face recognition". Current Science. 102 (4): 563–570.
  7. ^ Maynard Smith, John (1989). Evolutionary Genetics. Oxford: Oxford University Press. pp. 55, 267, 273, 281. ISBN 978-0-19-854215-5.
  8. ^ Williams, George C. (1992). "Optimization and related concepts". In: Natural Selection: Domains, Levels and Challenges. New York: Oxford University Press. pp. 60–61. ISBN 978-0-19-506933-4.
  9. ^ Ayala, Francisco J. (1982). Population and Evolutionary Genetics. Menlo Park, California: Benjamin/Cummings. pp. 60, 73–83, 182–190, 198–215. ISBN 978-0-8053-0315-5. LCCN 81021623. OCLC 8034790.
  10. ^ Buss, D.M. (1985). "Human mate selection". American Scientist. 37 (1): 47–51. Bibcode:1985AmSci..73...47B.
  11. ^ Koeslag, J.H. (1997). "Sex, the prisoner's dilemma game, and the evolutionary inevitability of cooperation". Journal of Theoretical Biology. 189 (1): 53–61. Bibcode:1997JThBi.189...53K. doi:10.1006/jtbi.1997.0496. PMID 9398503.
  12. ^ Koeslag, J.H. (2003). "Evolution of cooperation: cooperation defeats defection in the cornfield model". Journal of Theoretical Biology. 224 (3): 399–410. Bibcode:2003JThBi.224..399K. doi:10.1016/s0022-5193(03)00188-7. PMID 12941597.
  13. ^ Koeslag, J.H.; Koeslag, P.D. (1993). "Evolutionarily stable meiotic sex". Journal of Heredity. 84 (5): 396–399. doi:10.1093/oxfordjournals.jhered.a111360.
  14. ^ Koeslag, P.D.; Koeslag, J.H. (1994). "Koinophilia stabilizes bi-gender sexual reproduction against asex in an unchanging environment". Journal of Theoretical Biology. 166 (3): 251–260. Bibcode:1994JThBi.166..251K. doi:10.1006/jtbi.1994.1023. PMID 8159013.
  15. ^ a b Langlois, J.H.; Roggman, L.A.; Musselman, L.; Acton, S. (1991). "A picture is worth a thousand words: Reply to 'On the difficulty of averaging faces'". Psychological Science. 2 (5): 354–357. doi:10.1111/j.1467-9280.1991.tb00165.x. S2CID 143993972.
  16. ^ a b Langlois, J.H.; Musselman, L. (1995). "The myths and mysteries of beauty". In Calhoun, D.R (ed.). 1996 Yearbook of Science and the Future. Chicago: Encyclopædia Britannica, Inc. pp. 40–61.
  17. ^ a b Rubenstein, A.J.; Langlois, J.H.; Roggman, J.H. (2002). "What makes a face attractive and why: The role of averageness in defining facial beauty". In Rhodes, G.; Zebrowitz, L.A. (eds.). Facial Attractiveness: Evolutionary, Cognitive, and Social Perspectives. Westport, CT: Ablex. pp. 1–33.
  18. ^ Martin Gruendl. "the average of two human faces". Uni-regensburg.de. Retrieved 2018-06-04.
  19. ^ "averaging process the more attractive and appealing the average face became". Homepage.psy.utexas.edu. Archived from the original on 2015-02-04. Retrieved 2018-06-04.
  20. ^ Langlois, J.H.; Roggman, L.A.; Musselman, L. (1994). "What is average and what is not average about attractive faces?". Psychological Science. 5 (4): 214–220. doi:10.1111/j.1467-9280.1994.tb00503.x. S2CID 145147905.
  21. ^ Kalick, S.M.; Zebrowitz, L.A.; Langlois, J.H.; Johnson, R.M. (1998). "Does human facial attractiveness honestly advertise health? Longitudinal data on an evolutionary question". Psychological Science. 9: 8–13. doi:10.1111/1467-9280.00002. S2CID 9134500.
  22. ^ Hoss, R.A.; Langlois, J.H. (2003). "Infants prefer attractive faces". In Pascalis, O.; Slater, A. (eds.). The Development of Face Processing in infancy and early childhood: Current perspectives. New York: Nova Science Publishers. pp. 27–38.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search