Laplace's method

In mathematics, Laplace's method, named after Pierre-Simon Laplace, is a technique used to approximate integrals of the form

where is a twice-differentiable function, is a large number, and the endpoints and could be infinite. This technique was originally presented in the book Laplace (1774).

In Bayesian statistics, Laplace's approximation can refer to either approximating the posterior normalizing constant with Laplace's method[1] or approximating the posterior distribution with a Gaussian centered at the maximum a posteriori estimate.[2] Laplace approximations are used in the integrated nested Laplace approximations method for fast approximations of Bayesian inference.

  1. ^ Tierney, Luke; Kadane, Joseph B. (1986). "Accurate Approximations for Posterior Moments and Marginal Densities". J. Amer. Statist. Assoc. 81 (393): 82–86. doi:10.1080/01621459.1986.10478240.
  2. ^ Amaral Turkman, M. Antónia; Paulino, Carlos Daniel; Müller, Peter (2019). "Methods Based on Analytic Approximations". Computational Bayesian Statistics: An Introduction. Cambridge University Press. pp. 150–171. ISBN 978-1-108-70374-1.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search