Largest remainders method

The largest remainder methods or quota methods are methods of allocating seats proportionally that are based on calculating a quota, i.e. a certain number of votes needed to be guaranteed a seat in parliament. Then, any leftover seats are handed over to "plurality" winners (the parties with the largest remainders, i.e. the most "leftover" votes).[1] They are typically contrasted with the more popular highest averages methods (also called divisor methods).[2]

Divisor methods are generally preferred by social choice theorists to the largest remainder methods because they are less susceptible to apportionment paradoxes.[2][3] In particular, divisor methods satisfy population monotonicity, i.e. voting for a party can never cause it to lose seats.[3] Such population paradoxes occur by increasing the electoral quota, which can cause different states' remainders to respond erratically.[4] Divisor methods also satisfy resource or house monotonicity, which says that increasing the number of seats in a legislature should not cause a state to lose a seat (a situation known as an Alabama paradox).[3][4]: Cor.4.3.1 

When using the Hare quota, the method is known as the Hare–Niemeyer or Hamilton method.

  1. ^ Tannenbaum, Peter (2010). Excursions in Modern Mathematics. New York: Prentice Hall. p. 128. ISBN 978-0-321-56803-8.
  2. ^ a b Pukelsheim, Friedrich (2017), Pukelsheim, Friedrich (ed.), "Quota Methods of Apportionment: Divide and Rank", Proportional Representation: Apportionment Methods and Their Applications, Cham: Springer International Publishing, pp. 95–105, doi:10.1007/978-3-319-64707-4_5, ISBN 978-3-319-64707-4, retrieved 2024-05-10
  3. ^ a b c Pukelsheim, Friedrich (2017), Pukelsheim, Friedrich (ed.), "Securing System Consistency: Coherence and Paradoxes", Proportional Representation: Apportionment Methods and Their Applications, Cham: Springer International Publishing, pp. 159–183, doi:10.1007/978-3-319-64707-4_9, ISBN 978-3-319-64707-4, retrieved 2024-05-10
  4. ^ a b Balinski, Michel L.; Young, H. Peyton (1982). Fair Representation: Meeting the Ideal of One Man, One Vote. New Haven: Yale University Press. ISBN 0-300-02724-9.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search