Lindhard theory

In condensed matter physics, Lindhard theory[1] is a method of calculating the effects of electric field screening by electrons in a solid. It is based on quantum mechanics (first-order perturbation theory) and the random phase approximation. It is named after Danish physicist Jens Lindhard, who first developed the theory in 1954.[2][3][4]

Thomas–Fermi screening and the plasma oscillations can be derived as a special case of the more general Lindhard formula. In particular, Thomas–Fermi screening is the limit of the Lindhard formula when the wavevector (the reciprocal of the length-scale of interest) is much smaller than the Fermi wavevector, i.e. the long-distance limit.[1] The Lorentz–Drude expression for the plasma oscillations are recovered in the dynamic case (long wavelengths, finite frequency).

This article uses cgs-Gaussian units.

  1. ^ a b N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning, Toronto, 1976)
  2. ^ Lindhard, Jens (1954). "On the properties of a gas of charged particles" (PDF). Danske Matematisk-fysiske Meddelelser. 28 (8): 1–57. Retrieved 2016-09-28.
  3. ^ Andersen, Jens Ulrik; Sigmund, Peter (September 1998). "Jens Lindhard". Physics Today. 51 (9): 89–90. Bibcode:1998PhT....51i..89A. doi:10.1063/1.882460. ISSN 0031-9228.
  4. ^ Smith, Henrik (1983). "The Lindhard Function and the Teaching of Solid State Physics". Physica Scripta. 28 (3): 287–293. Bibcode:1983PhyS...28..287S. doi:10.1088/0031-8949/28/3/005. ISSN 1402-4896. S2CID 250798690.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search