Linear recurrence with constant coefficients

In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients[1]: ch. 17 [2]: ch. 10  (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence. The polynomial's linearity means that each of its terms has degree 0 or 1. A linear recurrence denotes the evolution of some variable over time, with the current time period or discrete moment in time denoted as t, one period earlier denoted as t − 1, one period later as t + 1, etc.

The solution of such an equation is a function of t, and not of any iterate values, giving the value of the iterate at any time. To find the solution it is necessary to know the specific values (known as initial conditions) of n of the iterates, and normally these are the n iterates that are oldest. The equation or its variable is said to be stable if from any set of initial conditions the variable's limit as time goes to infinity exists; this limit is called the steady state.

Difference equations are used in a variety of contexts, such as in economics to model the evolution through time of variables such as gross domestic product, the inflation rate, the exchange rate, etc. They are used in modeling such time series because values of these variables are only measured at discrete intervals. In econometric applications, linear difference equations are modeled with stochastic terms in the form of autoregressive (AR) models and in models such as vector autoregression (VAR) and autoregressive moving average (ARMA) models that combine AR with other features.

  1. ^ Chiang, Alpha (1984). Fundamental Methods of Mathematical Economics (Third ed.). New York: McGraw-Hill. ISBN 0-07-010813-7.
  2. ^ Baumol, William (1970). Economic Dynamics (Third ed.). New York: Macmillan. ISBN 0-02-306660-1.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search