Magnetoresistance

Magnetoresistance is the tendency of a material (often ferromagnetic) to change the value of its electrical resistance in an externally-applied magnetic field. There are a variety of effects that can be called magnetoresistance. Some occur in bulk non-magnetic metals and semiconductors, such as geometrical magnetoresistance, Shubnikov–de Haas oscillations, or the common positive magnetoresistance in metals.[1] Other effects occur in magnetic metals, such as negative magnetoresistance in ferromagnets[2] or anisotropic magnetoresistance (AMR). Finally, in multicomponent or multilayer systems (e.g. magnetic tunnel junctions), giant magnetoresistance (GMR), tunnel magnetoresistance (TMR), colossal magnetoresistance (CMR), and extraordinary magnetoresistance (EMR) can be observed.

The first magnetoresistive effect was discovered in 1856 by William Thomson, better known as Lord Kelvin, but he was unable to lower the electrical resistance of anything by more than 5%. Today, systems including semimetals[3] and concentric ring EMR structures are known. In these, a magnetic field can adjust the resistance by orders of magnitude. Since different mechanisms can alter the resistance, it is useful to separately consider situations where it depends on a magnetic field directly (e.g. geometric magnetoresistance and multiband magnetoresistance) and those where it does so indirectly through magnetization (e.g. AMR and TMR).

  1. ^ Pippard, A.B. (1989). Magnetoresistance in Metals. Cambridge University Press. ISBN 978-0-521-32660-5.
  2. ^ Coleman, R.V.; Isin, A. (1966), "Magnetoresistance in Iron Single Crystals", Journal of Applied Physics, 37 (3): 1028–9, Bibcode:1966JAP....37.1028C, doi:10.1063/1.1708320
  3. ^ "Unstoppable Magnetoresistance".

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search