Mechanotransduction

In cellular biology, mechanotransduction (mechano + transduction) is any of various mechanisms by which cells convert mechanical stimulus into electrochemical activity.[1][2][3][4] This form of sensory transduction is responsible for a number of senses and physiological processes in the body, including proprioception, touch,[5] balance, and hearing.[6][7][8] The basic mechanism of mechanotransduction involves converting mechanical signals into electrical or chemical signals.

Some biological machines

In this process, a mechanically gated ion channel makes it possible for sound, pressure, or movement to cause a change in the excitability of specialized sensory cells and sensory neurons.[9] The stimulation of a mechanoreceptor causes mechanically sensitive ion channels to open and produce a transduction current that changes the membrane potential of the cell.[10] Typically the mechanical stimulus gets filtered in the conveying medium before reaching the site of mechanotransduction.[11] Cellular responses to mechanotransduction are variable and give rise to a variety of changes and sensations. Broader issues involved include molecular biomechanics.

Single-molecule biomechanics studies of proteins and DNA, and mechanochemical coupling in molecular motors have demonstrated the critical importance of molecular mechanics as a new frontier in bioengineering and life sciences. Protein domains, connected by intrinsically disordered flexible linker domains, induce long-range allostery via protein domain dynamics. The resultant dynamic modes cannot be generally predicted from static structures of either the entire protein or individual domains. They can however be inferred by comparing different structures of a protein (as in Database of Molecular Motions). They can also be suggested by sampling in extensive molecular dynamics trajectories[12] and principal component analysis,[13] or they can be directly observed using spectra[14][15] measured by neutron spin echo spectroscopy. Current findings indicate that the mechanotransduction channel in hair cells is a complex biological machine. Mechanotransduction also includes the use of chemical energy to do mechanical work.[16]

  1. ^ Biswas, Abhijit; Manivannan, M.; Srinivasan, Mandyam A. (2015). "Vibrotactile Sensitivity Threshold: Nonlinear Stochastic Mechanotransduction Model of the Pacinian Corpuscle". IEEE Transactions on Haptics. 8 (1): 102–113. doi:10.1109/TOH.2014.2369422. PMID 25398183. S2CID 15326972.
  2. ^ Katsumi, A.; Orr, AW; Tzima, E; Schwartz, MA (2003). "Integrins in Mechanotransduction". Journal of Biological Chemistry. 279 (13): 12001–4. doi:10.1074/jbc.R300038200. PMID 14960578.
  3. ^ Qin, Y.; Qin, Y; Liu, J; Tanswell, AK; Post, M (1996). "Mechanical Strain Induces pp60src Activation and Translocation to Cytoskeleton in Fetal Rat Lung Cells". Journal of Biological Chemistry. 271 (12): 7066–71. doi:10.1074/jbc.271.12.7066. PMID 8636139.
  4. ^ Bidhendi, Amir J; Altartouri, Bara; Gosselin, Frédérick P.; Geitmann, Anja (2019). "Mechanical stress initiates and sustains the morphogenesis of wavy leaf epidermal cells". Cell Reports. 28 (5): 1237–1250. doi:10.1016/j.celrep.2019.07.006. PMID 31365867.
  5. ^ Biswas, Abhijit; Manivannan, M.; Srinivasan, Mandyam A. (2014). "Nonlinear two stage mechanotransduction model and neural response of Pacinian Corpuscle". Biomedical Science and Engineering Center Conference (BSEC), 2014 Annual Oak Ridge National Laboratory. USA: IEEE. pp. 1–4. doi:10.1109/BSEC.2014.6867740.
  6. ^ Tavernarakis, Nektarios; Driscoll, Monica (1997). "Molecular Modeling of Mechanotransduction in the Nematode Caenorhabditis Elegans". Annual Review of Physiology. 59: 659–89. doi:10.1146/annurev.physiol.59.1.659. PMID 9074782.
  7. ^ Howard, J; Roberts, W M; Hudspeth, A J (1988). "Mechanoelectrical Transduction by Hair Cells". Annual Review of Biophysics and Biophysical Chemistry. 17: 99–124. doi:10.1146/annurev.bb.17.060188.000531. PMID 3293600.
  8. ^ Hackney, CM; Furness, DN (1995). "Mechanotransduction in vertebrate hair cells: Structure and function of the stereociliary bundle". The American Journal of Physiology. 268 (1 Pt 1): C1–13. doi:10.1152/ajpcell.1995.268.1.C1. PMID 7840137.
  9. ^ Gillespie, Peter G.; Walker, Richard G. (2001). "Molecular basis of mechanosensory transduction". Nature. 413 (6852): 194–202. Bibcode:2001Natur.413..194G. doi:10.1038/35093011. PMID 11557988. S2CID 4388399.
  10. ^ Grigg, P (1986). "Biophysical studies of mechanoreceptors". Journal of Applied Physiology. 60 (4): 1107–15. doi:10.1152/jappl.1986.60.4.1107. PMID 2422151.
  11. ^ Biswas, Abhijit; Manivannan, M.; Srinivasan, Mandyam A. (2015). "Multiscale Layered Biomechanical Model of the Pacinian Corpuscle". IEEE Transactions on Haptics. 8 (1): 31–42. doi:10.1109/TOH.2014.2369416. PMID 25398182. S2CID 24658742.
  12. ^ Potestio R, Pontiggia F, Micheletti C (Jun 2009). "Coarse-grained description of protein internal dynamics: an optimal strategy for decomposing proteins in rigid subunits". Biophysical Journal. 96 (12): 4993–5002. Bibcode:2009BpJ....96.4993P. doi:10.1016/j.bpj.2009.03.051. PMC 2712024. PMID 19527659.
  13. ^ Baron R, Vellore NA (Jul 2012). "LSD1/CoREST is an allosteric nanoscale clamp regulated by H3-histone-tail molecular recognition". Proceedings of the National Academy of Sciences of the United States of America. 109 (31): 12509–14. Bibcode:2012PNAS..10912509B. doi:10.1073/pnas.1207892109. PMC 3411975. PMID 22802671.
  14. ^ Farago B, Li J, Cornilescu G, Callaway DJ, Bu Z (Nov 2010). "Activation of nanoscale allosteric protein domain motion revealed by neutron spin echo spectroscopy". Biophysical Journal. 99 (10): 3473–3482. Bibcode:2010BpJ....99.3473F. doi:10.1016/j.bpj.2010.09.058. PMC 2980739. PMID 21081097.
  15. ^ Bu Z, Biehl R, Monkenbusch M, Richter D, Callaway DJ (Dec 2005). "Coupled protein domain motion in Taq polymerase revealed by neutron spin-echo spectroscopy". Proceedings of the National Academy of Sciences of the United States of America. 102 (49): 17646–17651. Bibcode:2005PNAS..10217646B. doi:10.1073/pnas.0503388102. PMC 1345721. PMID 16306270.
  16. ^ Nakano, Tadashi; Eckford, Andrew W.; Haraguchi, Tokuko (12 September 2013). Molecular Communication. Cambridge University Press. ISBN 978-1-107-02308-6.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search