Minimum evolution

Minimum evolution is a distance method employed in phylogenetics modeling. It shares with maximum parsimony the aspect of searching for the phylogeny that has the shortest total sum of branch lengths.[1][2]

The theoretical foundations of the minimum evolution (ME) criterion lay in the seminal works of both Kidd and Sgaramella-Zonta (1971)[3] and Rzhetsky and Nei (1993).[4] In these frameworks, the molecular sequences from taxa are replaced by a set of measures of their dissimilarity (i.e., the so-called "evolutionary distances") and a fundamental result states that if such distances were unbiased estimates of the true evolutionary distances from taxa (i.e., the distances that one would obtain if all the molecular data from taxa were available), then the true phylogeny of taxa would have an expected length shorter than any other possible phylogeny T compatible with those distances.

  1. ^ Catanzaro, Daniele (2010). Estimating phylogenies from molecular data, in Mathematical approaches to polymer sequence analysis and related problems. Springer, New York.
  2. ^ Catanzaro D (2009). "The minimum evolution problem: Overview and classification". Networks. 53 (2): 112–125. doi:10.1002/net.20280. S2CID 6018514.
  3. ^ Kidd KK, Sgaramella-Zonta LA (1971). "Phylogenetic analysis: Concepts and methods". American Journal of Human Genetics. 23 (3): 235–252. PMC 1706731. PMID 5089842.
  4. ^ Rzhetsky A, Nei M (1993). "Theoretical foundations of the minimum evolution method of phylogenetic inference". Molecular Biology and Evolution. 10: 21073–1095.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search