Monstrous moonshine

In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group M and modular functions, in particular, the j function. The initial numerical observation was made by John McKay in 1978, and the phrase was coined by John Conway and Simon P. Norton in 1979.[1][2][3]

The monstrous moonshine is now known to be underlain by a vertex operator algebra called the moonshine module (or monster vertex algebra) constructed by Igor Frenkel, James Lepowsky, and Arne Meurman in 1988[4], which has the monster group as its group of symmetries. This vertex operator algebra is commonly interpreted as a structure underlying a two-dimensional conformal field theory, allowing physics to form a bridge between two mathematical areas. The conjectures made by Conway and Norton were proven by Richard Borcherds for the moonshine module in 1992 using the no-ghost theorem from string theory and the theory of vertex operator algebras and generalized Kac–Moody algebras.

  1. ^ A short introduction to Monstrous Moonshine Valdo Tatitscheff January 24, 2019
  2. ^ J. Conway and S. Norton. Monstrous Moonshine. Bull. Lond. Math. Soc., 11:308– 339, 1979
  3. ^ Mathematicians Chase Moonshine’s Shadow Erica Klarreich March 12, 2015 https://www.quantamagazine.org/mathematicians-chase-moonshine-string-theory-connections-20150312/
  4. ^ Frenkel, Igor; Lepowsky, James; Meurman, Arne (1988). Vertex operator algebras and the monster. Pure and applied mathematics. Boston San Diego New York [etc.]: Academic press. ISBN 978-0-12-267065-7.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search