Multi-state modeling of biomolecules

Multi-state modeling of biomolecules refers to a series of techniques used to represent and compute the behaviour of biological molecules or complexes that can adopt a large number of possible functional states.

Biological signaling systems often rely on complexes of biological macromolecules that can undergo several functionally significant modifications that are mutually compatible. Thus, they can exist in a very large number of functionally different states. Modeling such multi-state systems poses two problems: The problem of how to describe and specify a multi-state system (the "specification problem") and the problem of how to use a computer to simulate the progress of the system over time (the "computation problem"). To address the specification problem, modelers have in recent years moved away from explicit specification of all possible states, and towards rule-based modeling that allow for implicit model specification, including the κ-calculus,[1] BioNetGen,[2][3][4][5] the Allosteric Network Compiler[6] and others.[7][8] To tackle the computation problem, they have turned to particle-based methods that have in many cases proved more computationally efficient than population-based methods based on ordinary differential equations, partial differential equations, or the Gillespie stochastic simulation algorithm.[9][10] Given current computing technology, particle-based methods are sometimes the only possible option. Particle-based simulators further fall into two categories: Non-spatial simulators such as StochSim,[11] DYNSTOC,[12] RuleMonkey,[9][13] and NFSim[14] and spatial simulators,[15] including Meredys,[16] SRSim[17][18] and MCell.[19][20][21] Modelers can thus choose from a variety of tools; the best choice depending on the particular problem. Development of faster and more powerful methods is ongoing, promising the ability to simulate ever more complex signaling processes in the future.

  1. ^ Danos V, Laneve C (2004). "Formal molecular biology". Theoretical Computer Science. 325: 69–110. doi:10.1016/j.tcs.2004.03.065.
  2. ^ Blinov ML, Faeder JR, Goldstein B, Hlavacek WS (November 2004). "BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains". Bioinformatics. 20 (17): 3289–91. doi:10.1093/bioinformatics/bth378. PMID 15217809.
  3. ^ Faeder JR, Blinov ML, Goldstein B, Hlavacek WS (2005). "Rule-Based Modeling of Biochemical Networks". Complexity. 10 (4): 22–41. Bibcode:2005Cmplx..10d..22F. doi:10.1002/cplx.20074. S2CID 9307441.
  4. ^ Hlavacek WS, Faeder JR, Blinov ML, Posner RG, Hucka M, Fontana W (July 2006). "Rules for modeling signal-transduction systems". Science's STKE. 2006 (344): re6. CiteSeerX 10.1.1.83.1561. doi:10.1126/stke.3442006re6. PMID 16849649. S2CID 1816082.
  5. ^ Faeder JR, Blinov ML, Hlavacek WS (2009). "Rule-Based Modeling of Biochemical Systems with BioNetGen". Systems Biology. Methods in Molecular Biology. Vol. 500. Totowa, NJ: Humana Press. pp. 113–67. CiteSeerX 10.1.1.323.9577. doi:10.1007/978-1-59745-525-1_5. ISBN 978-1-934115-64-0. PMID 19399430.
  6. ^ Ollivier JF, Shahrezaei V, Swain PS (November 2010). "Scalable rule-based modelling of allosteric proteins and biochemical networks". PLOS Computational Biology. 6 (11): e1000975. Bibcode:2010PLSCB...6E0975O. doi:10.1371/journal.pcbi.1000975. PMC 2973810. PMID 21079669.
  7. ^ Lok L, Brent R (January 2005). "Automatic generation of cellular reaction networks with Moleculizer 1.0". Nature Biotechnology. 23 (1): 131–6. doi:10.1038/nbt1054. PMID 15637632. S2CID 23696958.
  8. ^ Yang J, Meng X, Hlavacek WS (November 2010). "Rule-based modelling and simulation of biochemical systems with molecular finite automata". IET Systems Biology. 4 (6): 453–66. arXiv:1007.1315. doi:10.1049/iet-syb.2010.0015. PMC 3070173. PMID 21073243.
  9. ^ a b Yang J, Monine MI, Faeder JR, Hlavacek WS (September 2008). "Kinetic Monte Carlo method for rule-based modeling of biochemical networks". Physical Review E. 78 (3 Pt 1): 031910. arXiv:0712.3773. Bibcode:2008PhRvE..78c1910Y. doi:10.1103/PhysRevE.78.031910. PMC 2652652. PMID 18851068.
  10. ^ Cite error: The named reference Hogg2013 was invoked but never defined (see the help page).
  11. ^ Le Novère N, Shimizu TS (June 2001). "STOCHSIM: modelling of stochastic biomolecular processes". Bioinformatics. 17 (6): 575–6. doi:10.1093/bioinformatics/17.6.575. PMID 11395441.
  12. ^ Colvin J, Monine MI, Faeder JR, Hlavacek WS, Von Hoff DD, Posner RG (April 2009). "Simulation of large-scale rule-based models". Bioinformatics. 25 (7): 910–7. doi:10.1093/bioinformatics/btp066. PMC 2660871. PMID 19213740.
  13. ^ Colvin J, Monine MI, Gutenkunst RN, Hlavacek WS, Von Hoff DD, Posner RG (July 2010). "RuleMonkey: software for stochastic simulation of rule-based models". BMC Bioinformatics. 11: 404. doi:10.1186/1471-2105-11-404. PMC 2921409. PMID 20673321.
  14. ^ Sneddon MW, Faeder JR, Emonet T (February 2011). "Efficient modeling, simulation and coarse-graining of biological complexity with NFsim". Nature Methods. 8 (2): 177–83. doi:10.1038/nmeth.1546. PMID 21186362. S2CID 5412795.
  15. ^ Schöneberg J, Ullrich A, Noé F (2014-10-24). "Simulation tools for particle-based reaction-diffusion dynamics in continuous space". BMC Biophysics. 7 (1): 11. doi:10.1186/s13628-014-0011-5. PMC 4347613. PMID 25737778.
  16. ^ Tolle DP, Le Novère N (March 2010). "Meredys, a multi-compartment reaction-diffusion simulator using multistate realistic molecular complexes". BMC Systems Biology. 4: 24. doi:10.1186/1752-0509-4-24. PMC 2848630. PMID 20233406.
  17. ^ Cite error: The named reference Grunert2010 was invoked but never defined (see the help page).
  18. ^ Cite error: The named reference Grunert2011 was invoked but never defined (see the help page).
  19. ^ Stiles JR, Van Helden D, Bartol TM, Salpeter EE, Salpeter MM (June 1996). "Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle". Proceedings of the National Academy of Sciences of the United States of America. 93 (12): 5747–52. Bibcode:1996PNAS...93.5747S. doi:10.1073/pnas.93.12.5747. PMC 39132. PMID 8650164.
  20. ^ Stiles JR, Bartol TM (2001). Computational Neuroscience: Realistic Modeling for Experimentalists. In: De Schutter, E (ed). Computational Neuroscience: Realistic Modeling for Experimentalists. CRC Press, Boca Raton.
  21. ^ Kerr RA, Bartol TM, Kaminsky B, Dittrich M, Chang JC, Baden SB, et al. (October 2008). "Fast Monte Carlo Simulation Methods for Biological Reaction-Diffusion Systems in Solution and on Surfaces". SIAM Journal on Scientific Computing. 30 (6): 3126–3149. Bibcode:2008SJSC...30.3126K. doi:10.1137/070692017. PMC 2819163. PMID 20151023.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search