Multifactor dimensionality reduction

Multifactor dimensionality reduction (MDR) is a statistical approach, also used in machine learning automatic approaches,[1] for detecting and characterizing combinations of attributes or independent variables that interact to influence a dependent or class variable.[2][3][4][5][6][7][8] MDR was designed specifically to identify nonadditive interactions among discrete variables that influence a binary outcome and is considered a nonparametric and model-free alternative to traditional statistical methods such as logistic regression.

The basis of the MDR method is a constructive induction or feature engineering algorithm that converts two or more variables or attributes to a single attribute.[9] This process of constructing a new attribute changes the representation space of the data.[10] The end goal is to create or discover a representation that facilitates the detection of nonlinear or nonadditive interactions among the attributes such that prediction of the class variable is improved over that of the original representation of the data.

  1. ^ McKinney, Brett A.; Reif, David M.; Ritchie, Marylyn D.; Moore, Jason H. (1 January 2006). "Machine learning for detecting gene-gene interactions: a review". Applied Bioinformatics. 5 (2): 77–88. doi:10.2165/00822942-200605020-00002. ISSN 1175-5636. PMC 3244050. PMID 16722772.
  2. ^ Ritchie, Marylyn D.; Hahn, Lance W.; Roodi, Nady; Bailey, L. Renee; Dupont, William D.; Parl, Fritz F.; Moore, Jason H. (1 July 2001). "Multifactor-Dimensionality Reduction Reveals High-Order Interactions among Estrogen-Metabolism Genes in Sporadic Breast Cancer". The American Journal of Human Genetics. 69 (1): 138–147. doi:10.1086/321276. ISSN 0002-9297. PMC 1226028. PMID 11404819.
  3. ^ Ritchie, Marylyn D.; Hahn, Lance W.; Moore, Jason H. (1 February 2003). "Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity". Genetic Epidemiology. 24 (2): 150–157. doi:10.1002/gepi.10218. ISSN 1098-2272. PMID 12548676. S2CID 6335612.
  4. ^ Hahn, L. W.; Ritchie, M. D.; Moore, J. H. (12 February 2003). "Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions". Bioinformatics. 19 (3): 376–382. doi:10.1093/bioinformatics/btf869. ISSN 1367-4803. PMID 12584123.
  5. ^ W., Hahn, Lance; H., Moore, Jason (1 January 2004). "Ideal Discrimination of Discrete Clinical Endpoints Using Multilocus Genotypes". In Silico Biology. 4 (2): 183–194. doi:10.3233/ISB-00126. ISSN 1386-6338. PMID 15107022.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Moore, Jason H. (1 November 2004). "Computational analysis of gene-gene interactions using multifactor dimensionality reduction". Expert Review of Molecular Diagnostics. 4 (6): 795–803. doi:10.1586/14737159.4.6.795. ISSN 1473-7159. PMID 15525222. S2CID 26324399.
  7. ^ Cite error: The named reference :1 was invoked but never defined (see the help page).
  8. ^ Moore, Jason H. (1 January 2010). "Detecting, Characterizing, and Interpreting Nonlinear Gene–Gene Interactions Using Multifactor Dimensionality Reduction". Computational Methods for Genetics of Complex Traits. Advances in Genetics. Vol. 72. pp. 101–116. doi:10.1016/B978-0-12-380862-2.00005-9. ISBN 978-0-12-380862-2. ISSN 0065-2660. PMID 21029850.
  9. ^ Moore, Jason H.; Gilbert, Joshua C.; Tsai, Chia-Ti; Chiang, Fu-Tien; Holden, Todd; Barney, Nate; White, Bill C. (21 July 2006). "A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility". Journal of Theoretical Biology. 241 (2): 252–261. Bibcode:2006JThBi.241..252M. doi:10.1016/j.jtbi.2005.11.036. PMID 16457852.
  10. ^ Michalski, R (February 1983). "A theory and methodology of inductive learning". Artificial Intelligence. 20 (2): 111–161. doi:10.1016/0004-3702(83)90016-4.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search