Natural time analysis

Natural time analysis is a statistical method applied to analyze complex time series and critical phenomena, based on event counts as a measure of "time" rather than the clock time.[1][2] Natural time concept was introduced by P. Varotsos, N. Sarlis and E. Skordas in 2001.[3] Natural time analysis has been primarily applied to earthquake prediction[1][2] / nowcasting[4][5][6][7][8][9][10][11][12][13] and secondarily to sudden cardiac death[14] / heart failure[15][16] and financial markets.[17] Natural time characteristics are considered to be unique.[9]

  1. ^ a b Varotsos, P. A.; Sarlis, N. V.; Skordas, E. S. (2002). "Long-range correlations in the electric signals that precede rupture". Physical Review E. 66 (1 Pt 1): 011902. Bibcode:2002PhRvE..66a1902V. doi:10.1103/PhysRevE.66.011902. ISSN 1539-3755. PMID 12241379.
  2. ^ a b Varotsos, Sarlis & Skordas 2011 (book), preface and chapter 2
  3. ^ Cite error: The named reference :15 was invoked but never defined (see the help page).
  4. ^ Rundle, J. B.; Turcotte, D. L.; Donnellan, A.; Ludwig, L. Grant; Luginbuhl, M.; Gong, G. (2016). "Nowcasting earthquakes". Earth and Space Science. 3 (11): 480–486. Bibcode:2016E&SS....3..480R. doi:10.1002/2016EA000185. ISSN 2333-5084.
  5. ^ Rundle, John B.; Luginbuhl, Molly; Khapikova, Polina; Turcotte, Donald L.; Donnellan, Andrea; McKim, Grayson (2020-01-01). "Nowcasting Great Global Earthquake and Tsunami Sources". Pure and Applied Geophysics. 177 (1): 359–368. doi:10.1007/s00024-018-2039-y. ISSN 1420-9136. S2CID 133790229.
  6. ^ Williams, Charles A.; Peng, Zhigang; Zhang, Yongxian; Fukuyama, Eiichi; Goebel, Thomas; Yoder, Mark, eds. (2019). "Introduction". Earthquakes and Multi-hazards Around the Pacific Rim, Vol. II. Pageoph Topical Volumes. Birkhäuser Basel. ISBN 978-3-319-92296-6.
  7. ^ Rundle, John B.; Giguere, Alexis; Turcotte, Donald L.; Crutchfield, James P.; Donnellan, Andrea (2019). "Global Seismic Nowcasting With Shannon Information Entropy". Earth and Space Science. 6 (1): 191–197. Bibcode:2019E&SS....6..191R. doi:10.1029/2018EA000464. ISSN 2333-5084. PMC 6392127. PMID 30854411.
  8. ^ Luginbuhl, Molly; Rundle, John B.; Turcotte, Donald L. (2019-01-14). "Statistical physics models for aftershocks and induced seismicity". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 377 (2136): 20170397. Bibcode:2019RSPTA.37770397L. doi:10.1098/rsta.2017.0397. PMC 6282405. PMID 30478209.
  9. ^ a b Pasari, Sumanta (2019-04-01). "Nowcasting Earthquakes in the Bay of Bengal Region". Pure and Applied Geophysics. 176 (4): 1417–1432. Bibcode:2019PApGe.176.1417P. doi:10.1007/s00024-018-2037-0. ISSN 1420-9136. S2CID 134896312.
  10. ^ Luginbuhl, Molly; Rundle, John B.; Turcotte, Donald L. (2018-11-01). "Natural time and nowcasting induced seismicity at the Groningen gas field in the Netherlands". Geophysical Journal International. 215 (2): 753–759. Bibcode:2018GeoJI.215..753L. doi:10.1093/gji/ggy315. ISSN 0956-540X.
  11. ^ Luginbuhl, Molly; Rundle, John B.; Turcotte, Donald L. (2018-02-01). "Natural Time and Nowcasting Earthquakes: Are Large Global Earthquakes Temporally Clustered?". Pure and Applied Geophysics. 175 (2): 661–670. Bibcode:2018PApGe.175..661L. doi:10.1007/s00024-018-1778-0. ISSN 1420-9136. S2CID 186239922.
  12. ^ Rundle, John B.; Luginbuhl, Molly; Giguere, Alexis; Turcotte, Donald L. (2018-02-01). "Natural Time, Nowcasting and the Physics of Earthquakes: Estimation of Seismic Risk to Global Megacities". Pure and Applied Geophysics. 175 (2): 647–660. arXiv:1709.10057. Bibcode:2018PApGe.175..647R. doi:10.1007/s00024-017-1720-x. ISSN 1420-9136. S2CID 54169682.
  13. ^ Luginbuhl, Molly; Rundle, John B.; Hawkins, Angela; Turcotte, Donald L. (2018-01-01). "Nowcasting Earthquakes: A Comparison of Induced Earthquakes in Oklahoma and at the Geysers, California". Pure and Applied Geophysics. 175 (1): 49–65. Bibcode:2018PApGe.175...49L. doi:10.1007/s00024-017-1678-8. ISSN 1420-9136. S2CID 134725994.
  14. ^ Varotsos, P. A.; Sarlis, N. V.; Skordas, E. S.; Lazaridou, M. S. (2007-08-06). "Identifying sudden cardiac death risk and specifying its occurrence time by analyzing electrocardiograms in natural time". Applied Physics Letters. 91 (6): 064106. Bibcode:2007ApPhL..91f4106V. doi:10.1063/1.2768928. ISSN 0003-6951.
  15. ^ Sarlis, N. V.; Skordas, E. S.; Varotsos, P. A. (2009-07-01). "Heart rate variability in natural time and 1/f "noise"". EPL. 87 (1): 18003. Bibcode:2009EL.....8718003S. doi:10.1209/0295-5075/87/18003. ISSN 0295-5075. S2CID 122782584.
  16. ^ Baldoumas, George; Peschos, Dimitrios; Tatsis, Giorgos; Chronopoulos, Spyridon K.; Christofilakis, Vasilis; Kostarakis, Panos; Varotsos, Panayiotis; Sarlis, Nicholas V.; Skordas, Efthimios S.; Bechlioulis, Aris; Michalis, Lampros K. (2019-11-05). "A Prototype Photoplethysmography Electronic Device that Distinguishes Congestive Heart Failure from Healthy Individuals by Applying Natural Time Analysis". Electronics. 8 (11): 1288. doi:10.3390/electronics8111288.
  17. ^ Mintzelas, A.; Kiriakopoulos, K. (2016-01-01). "Natural time analysis in financial markets". Algorithmic Finance. 5 (1–2): 37–46. doi:10.3233/AF-160057. ISSN 2158-5571.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search