Non-homologous end joining

Non-homologous end joining (NHEJ) and homologous recombination (HR) in mammals during DNA double-strand break

Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. It is called "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology directed repair (HDR), which requires a homologous sequence to guide repair. NHEJ is active in both non-dividing and proliferating cells, while HDR is not readily accessible in non-dividing cells.[1] The term "non-homologous end joining" was coined in 1996 by Moore and Haber.[2]

NHEJ is typically guided by short homologous DNA sequences called microhomologies. These microhomologies are often present in single-stranded overhangs on the ends of double-strand breaks. When the overhangs are perfectly compatible, NHEJ usually repairs the break accurately.[2][3][4][5] Imprecise repair leading to loss of nucleotides can also occur, but is much more common when the overhangs are not compatible. Inappropriate NHEJ can lead to translocations and telomere fusion, hallmarks of tumor cells.[6]

NHEJ implementations are understood to have been existent throughout nearly all biological systems and it is the predominant double-strand break repair pathway in mammalian cells.[7] In budding yeast (Saccharomyces cerevisiae), however, homologous recombination dominates when the organism is grown under common laboratory conditions.

When the NHEJ pathway is inactivated, double-strand breaks can be repaired by a more error-prone pathway called microhomology-mediated end joining (MMEJ). In this pathway, end resection reveals short microhomologies on either side of the break, which are then aligned to guide repair.[8] This contrasts with classical NHEJ, which typically uses microhomologies already exposed in single-stranded overhangs on the DSB ends. Repair by MMEJ therefore leads to deletion of the DNA sequence between the microhomologies.

  1. ^ Chou, Shih‐Jie; Yang, Peng; Ban, Qian; Yang, Yi‐Ping; Wang, Mong‐Lien; Chien, Chian‐Shiu; Chen, Shih‐Jen; Sun, Na; Zhu, Yazhen; Liu, Hongtao; Hui, Wenqiao; Lin, Tai‐Chi; Wang, Fang; Zhang, Ryan Yue; Nguyen, Viet Q. (May 2020). "Dual Supramolecular Nanoparticle Vectors Enable CRISPR/Cas9‐Mediated Knockin of Retinoschisin 1 Gene—A Potential Nonviral Therapeutic Solution for X‐Linked Juvenile Retinoschisis". Advanced Science. 7 (10): 1903432. doi:10.1002/advs.201903432. ISSN 2198-3844. PMC 7237855. PMID 32440478.
  2. ^ a b Moore JK, Haber JE (May 1996). "Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae". Molecular and Cellular Biology. 16 (5): 2164–73. doi:10.1128/mcb.16.5.2164. PMC 231204. PMID 8628283.
  3. ^ Boulton SJ, Jackson SP (September 1996). "Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways". EMBO J. 15 (18): 5093–103. doi:10.1002/j.1460-2075.1996.tb00890.x. PMC 452249. PMID 8890183.
  4. ^ Wilson TE, Lieber MR (1999). "Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase beta (Pol4)-dependent pathway". J. Biol. Chem. 274 (33): 23599–23609. doi:10.1074/jbc.274.33.23599. PMID 10438542.
  5. ^ Budman J, Chu G (Feb 2005). "Processing of DNA for nonhomologous end-joining by cell-free extract". EMBO J. 24 (4): 849–60. doi:10.1038/sj.emboj.7600563. PMC 549622. PMID 15692565.
  6. ^ Espejel S, Franco S, Rodríguez-Perales S, Bouffler SD, Cigudosa JC, Blasco MA (May 2002). "Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres". The EMBO Journal. 21 (9): 2207–19. doi:10.1093/emboj/21.9.2207. PMC 125978. PMID 11980718.
  7. ^ Guirouilh-Barbat J, Huck S, Bertrand P, et al. (June 2004). "Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells". Mol. Cell. 14 (5): 611–23. doi:10.1016/j.molcel.2004.05.008. PMID 15175156.
  8. ^ McVey M, Lee SE (November 2008). "MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings". Trends Genet. 24 (11): 529–38. doi:10.1016/j.tig.2008.08.007. PMC 5303623. PMID 18809224.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search