Normal space

Separation axioms
in topological spaces
Kolmogorov classification
T0 (Kolmogorov)
T1 (Fréchet)
T2 (Hausdorff)
T2½(Urysohn)
completely T2 (completely Hausdorff)
T3 (regular Hausdorff)
T(Tychonoff)
T4 (normal Hausdorff)
T5 (completely normal
 Hausdorff)
T6 (perfectly normal
 Hausdorff)

In topology and related branches of mathematics, a normal space is a topological space in which any two disjoint closed sets have disjoint open neighborhoods. Such spaces need not be Hausdorff in general. A normal Hausdorff space is called a T4 space. Strengthenings of these concepts are detailed in the article below and include completely normal spaces and perfectly normal spaces, and their Hausdorff variants: T5 spaces and T6 spaces. All these conditions are examples of separation axioms.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search