Part of a series on | ||
Mathematics | ||
---|---|---|
|
||
![]() | ||
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers).
Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation).
Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is that it deals with statements that are simple to understand but are very difficult to solve. Examples of this are Fermat's Last Theorem, which was proved 358 years after the original formulation, and Goldbach's conjecture, which remains unsolved since the 18th century. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."[1] It was regarded as the example of pure mathematics with no applications outside mathematics until the 1970s, when it became known that prime numbers would be used as the basis for the creation of public-key cryptography algorithms.
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search