Parabolic trough

Parabolic trough at a plant near Harper Lake, California

A parabolic trough is a type of solar thermal collector that is straight in one dimension and curved as a parabola in the other two, lined with a polished metal mirror. The sunlight which enters the mirror parallel to its plane of symmetry is focused along the focal line, where objects are positioned that are intended to be heated. In a solar cooker, for example, food is placed at the focal line of a trough, which is cooked when the trough is aimed so the Sun is in its plane of symmetry.

For other purposes, a tube containing a fluid runs the length of the trough at its focal line. The sunlight is concentrated on the tube and the fluid heated to a high temperature by the energy of the sunlight. The hot fluid can be piped to a heat engine, which uses the heat energy to drive machinery, or to generate electricity. This solar energy collector is the most common and best known type of parabolic trough.

When heat transfer fluid is used to heat steam to drive a standard turbine generator, thermal efficiency ranges from 60-80%. The overall efficiency from collector to grid, i.e. (electrical output power)/(total impinging solar power) is about 15%, similar to photovoltaic cells but less than Stirling dish concentrators. Large-scale solar thermal power plants need a method for storing the energy, such as a thermocline tank, which uses a mixture of silica sand and quartzite rock to displace a significant portion of the volume in the tank. It is then filled with the heat transfer fluid, typically a molten nitrate salt.

As of 2014, the largest solar thermal power systems using parabolic trough technology include the 354 MW SEGS plants in California, the 280 MW Solana Generating Station with molten salt heat storage, the 250 MW Genesis Solar Energy Project, the Spanish 200 MW Solaben Solar Power Station, and the Andasol 1 solar power station.[1][2]


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search