Parallel speciation

In biology, parallel speciation is a type of speciation where there is repeated evolution of reproductively isolating traits via the same mechanisms occurring between separate yet closely related species inhabiting different environments.[1][2][3][4] This leads to a circumstance where independently evolved lineages have developed reproductive isolation from their ancestral lineage, but not from other independent lineages that inhabit similar environments.[1] In order for parallel speciation to be confirmed, there is a set of three requirements that has been established that must be met: there must be phylogenetic independence between the separate populations inhabiting similar environments to ensure that the traits responsible for reproductive isolation evolved separately, there must be reproductive isolation not only between the ancestral population and the descendent population, but also between descendent populations that inhabit dissimilar environments, and descendent populations that inhabit similar environments must not be reproductively isolated from one another.[1] To determine if natural selection specifically is the cause of parallel speciation, a fourth requirement has been established that includes identifying and testing an adaptive mechanism, which eliminates the possibility of a genetic factor such as polyploidy being the responsible agent.[1]

  1. ^ a b c d Schluter, Dolph; Nagel, Laura M. (1995). "Parallel Speciation by Natural Selection". The American Naturalist. 146 (2): 292–301. doi:10.1086/285799. ISSN 0003-0147. JSTOR 2463062. S2CID 84965667.
  2. ^ Rundle, Howard D.; Nagel, Laura; Boughman, Janette Wenrick; Schluter, Dolph (2000-01-14). "Natural Selection and Parallel Speciation in Sympatric Sticklebacks". Science. 287 (5451): 306–308. Bibcode:2000Sci...287..306R. doi:10.1126/science.287.5451.306. ISSN 0036-8075. PMID 10634785.
  3. ^ Strecker, Ulrike; Hausdorf, Bernhard; Wilkens, Horst (2012-01-01). "Parallel speciation in Astyanax cave fish (Teleostei) in Northern Mexico". Molecular Phylogenetics and Evolution. 62 (1): 62–70. doi:10.1016/j.ympev.2011.09.005. ISSN 1055-7903. PMID 21963344.
  4. ^ Johannesson, Kerstin (2001-03-01). "Parallel speciation: a key to sympatric divergence". Trends in Ecology & Evolution. 16 (3): 148–153. doi:10.1016/S0169-5347(00)02078-4. ISSN 0169-5347. PMID 11179579.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search