Peaking power plant

Kearny Generating Station, a former coal-fired base load power plant, now a gas-fired peaker, on the Hackensack River in New Jersey

Peaking power plants, also known as peaker plants, and occasionally just "peakers", are power plants that generally run only when there is a high demand, known as peak demand, for electricity.[1] Because they supply power only occasionally, the power supplied commands a much higher price per kilowatt hour than base load power. Peak load power plants are dispatched in combination with base load power plants,[citation needed] which supply a dependable and consistent amount of electricity, to meet the minimum demand.

Although historically peaking power plants were frequently used in conjunction with coal baseload plants, peaking plants are now used less commonly. Combined cycle gas turbine plants have two or more cycles, the first of which is very similar to a peaking plant, with the second running on the waste heat of the first. That type of plant is often capable of rapidly starting up, albeit at reduced efficiency, and then over some hours transitioning to a more efficient baseload generation mode. Combined cycle plants have similar capital cost per watt to peaking plants, but run for much longer periods, and use less fuel overall, and hence give cheaper electricity.

As of 2020, open cycle gas turbines give an electricity cost of around $151–198/MWh.[2]

Peaker plants have been replaced with battery storage in some places.[3] The New York Power Authority (NYPA) is seeking to replace gas peaker plants with battery storage,[4][5] 142 Tesla Megapacks (providing 100 MW) replaced a gas peaker plant in Ventura County, California[6][7] and in Lessines, Belgium 40 Tesla Megapacks (50 MW) replaced a turbojet generator.[8] Australia's Clean Energy Council found in April 2021 that battery storage can be 30% cheaper than gas peaker plants.[9]

  1. ^ Renewable and Efficient Electric Power Systems by Gilbert M. Masters
  2. ^ "Levelized Cost of Energy and of Storage". Archived from the original on 2021-02-20. Retrieved 2021-01-05.
  3. ^ Colthorpe, Andy (2022-04-22). "Drive to rehabilitate New York City fossil fuel peaker plant sites with battery storage". Energy Storage News. Retrieved 2022-12-12.
  4. ^ International, Smart Energy (2022-04-28). "NYPA seeks to replace gas peaker plants with battery storage". Smart Energy International. Retrieved 2022-12-12.
  5. ^ Colthorpe, Andy (2022-04-22). "Drive to rehabilitate New York City fossil fuel peaker plant sites with battery storage". Energy Storage News. Retrieved 2022-12-12.
  6. ^ Lambert, Fred (2021-06-30). "142 Tesla Megapacks power on to create giant new battery, replacing gas peaker plant in California". Electrek. Retrieved 2022-12-12.
  7. ^ "142 Tesla Megapacks Replace Fossil Fuel-Powered Peaker Plant in California, Shows Company Video". TESMANIAN. Retrieved 2022-12-12.
  8. ^ Lambert, Fred (2022-12-10). "Tesla unveils new biggest Megapack project in Europe". Electrek. Retrieved 2022-12-12.
  9. ^ Colthorpe, Andy (2021-04-12). "Battery storage 30% cheaper than new gas peaker plants, Australian study finds". Energy Storage News. Retrieved 2022-12-12.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search