Peptide mass fingerprinting

A typical workflow of a peptide mass fingerprinting experiment.

Peptide mass fingerprinting (PMF), also known as protein fingerprinting, is an analytical technique for protein identification in which the unknown protein of interest is first cleaved into smaller peptides, whose absolute masses can be accurately measured with a mass spectrometer such as MALDI-TOF or ESI-TOF.[1] The method was developed in 1993 by several groups independently.[2][3][4][5][6] The peptide masses are compared to either a database containing known protein sequences or even the genome. This is achieved by using computer programs that translate the known genome of the organism into proteins, then theoretically cut the proteins into peptides, and calculate the absolute masses of the peptides from each protein. They then compare the masses of the peptides of the unknown protein to the theoretical peptide masses of each protein encoded in the genome. The results are statistically analyzed to find the best match.

The advantage of this method is that only the masses of the peptides have to be known. A disadvantage is that the protein sequence has to be present in the database of interest. Additionally most PMF algorithms assume that the peptides come from a single protein.[7] The presence of a mixture can significantly complicate the analysis and potentially compromise the results. Typical for the PMF-based protein identification is the requirement for an isolated protein. Mixtures exceeding a number of 2–3 proteins typically require the additional use of MS/MS-based protein identification to achieve sufficient specificity of identification. Therefore, typical PMF samples are isolated proteins from two-dimensional gel electrophoresis (2D gels) or isolated SDS-PAGE bands. Additional analyses by MS/MS can either be direct, e.g., MALDI-TOF/TOF analysis or downstream nanoLC-ESI-MS/MS analysis of gel spot eluates.[7][8]

  1. ^ Clauser KR, Baker P, Burlingame AL (1999). "Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS/MS and database searching". Anal. Chem. 71 (14): 2871–82. doi:10.1021/ac9810516. PMID 10424174.
  2. ^ Pappin DJ, Hojrup P, Bleasby AJ (1993). "Rapid identification of proteins by peptide-mass fingerprinting". Curr. Biol. 3 (6): 327–32. Bibcode:1993CBio....3..327P. doi:10.1016/0960-9822(93)90195-T. PMID 15335725. S2CID 40203243.
  3. ^ Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C (1993). "Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases". Proc. Natl. Acad. Sci. U.S.A. 90 (11): 5011–5. Bibcode:1993PNAS...90.5011H. doi:10.1073/pnas.90.11.5011. PMC 46643. PMID 8506346.
  4. ^ Mann M, Højrup P, Roepstorff P (1993). "Use of mass spectrometric molecular weight information to identify proteins in sequence databases". Biological Mass Spectrometry. 22 (6): 338–45. doi:10.1002/bms.1200220605. PMID 8329463.
  5. ^ James P, Quadroni M, Carafoli E, Gonnet G (1993). "Protein identification by mass profile fingerprinting". Biochem. Biophys. Res. Commun. 195 (1): 58–64. doi:10.1006/bbrc.1993.2009. PMID 8363627.
  6. ^ Yates JR, Speicher S, Griffin PR, Hunkapiller T (1993). "Peptide mass maps: a highly informative approach to protein identification". Anal. Biochem. 214 (2): 397–408. doi:10.1006/abio.1993.1514. PMID 8109726.
  7. ^ a b Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Shevchenko A, Boucherie H, Mann M (1996). "Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels". Proc. Natl. Acad. Sci. U.S.A. 93 (25): 14440–5. Bibcode:1996PNAS...9314440S. doi:10.1073/pnas.93.25.14440. PMC 26151. PMID 8962070.
  8. ^ Wang W, Sun J, Nimtz M, Deckwer WD, Zeng AP (2003). "Protein identification from two-dimensional gel electrophoresis analysis of Klebsiella pneumoniae by combined use of mass spectrometry data and raw genome sequences". Proteome Science. 1 (1): 6. doi:10.1186/1477-5956-1-6. PMC 317362. PMID 14653859.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search