In mathematics, a pointed set[1][2] (also based set[1] or rooted set[3]) is an ordered pair where is a set and is an element of called the base point [2] (also spelled basepoint).[4]: 10–11
Maps between pointed sets and —called based maps,[5] pointed maps,[4] or point-preserving maps[6]—are functions from to that map one basepoint to another, i.e. maps such that . Based maps are usually denoted .
Pointed sets are very simple algebraic structures. In the sense of universal algebra, a pointed set is a set together with a single nullary operation [a] which picks out the basepoint.[7] Pointed maps are the homomorphisms of these algebraic structures.
The class of all pointed sets together with the class of all based maps forms a category. Every pointed set can be converted to an ordinary set by forgetting the basepoint (the forgetful functor is faithful), but the reverse is not true.[8]: 44 In particular, the empty set cannot be pointed, because it has no element that can be chosen as the basepoint.[9]
Greedoids
was invoked but never defined (see the help page).
Cite error: There are <ref group=lower-alpha>
tags or {{efn}}
templates on this page, but the references will not show without a {{reflist|group=lower-alpha}}
template or {{notelist}}
template (see the help page).
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search