Projector augmented wave method

The projector augmented wave method (PAW) is a technique used in ab initio electronic structure calculations. It is a generalization of the pseudopotential and linear augmented-plane-wave methods, and allows for density functional theory calculations to be performed with greater computational efficiency.[1]

Valence wavefunctions tend to have rapid oscillations near ion cores due to the requirement that they be orthogonal to core states; this situation is problematic because it requires many Fourier components (or in the case of grid-based methods, a very fine mesh) to describe the wavefunctions accurately. The PAW approach addresses this issue by transforming these rapidly oscillating wavefunctions into smooth wavefunctions which are more computationally convenient, and provides a way to calculate all-electron properties from these smooth wavefunctions. This approach is somewhat reminiscent of a change from the Schrödinger picture to the Heisenberg picture.

  1. ^ Blöchl, P.E. (1994). "Projector augmented-wave method". Physical Review B. 50 (24): 17953–17978. arXiv:cond-mat/0201015. Bibcode:1994PhRvB..5017953B. doi:10.1103/PhysRevB.50.17953. PMID 9976227.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search