Proper model structure

In higher category theory in mathematics, a proper model structure is a model structure in which additionally weak equivalences are preserved under pullback (fiber product) along fibrations, called right proper, and pushouts (cofiber product) along cofibrations, called left proper. It is helpful to construct weak equivalences and hence to find isomorphic objects in the homotopy theory of the model structure.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search