Proper reference frame (flat spacetime)

A proper reference frame in the theory of relativity is a particular form of accelerated reference frame, that is, a reference frame in which an accelerated observer can be considered as being at rest. It can describe phenomena in curved spacetime, as well as in "flat" Minkowski spacetime in which the spacetime curvature caused by the energy–momentum tensor can be disregarded. Since this article considers only flat spacetime—and uses the definition that special relativity is the theory of flat spacetime while general relativity is a theory of gravitation in terms of curved spacetime—it is consequently concerned with accelerated frames in special relativity.[1][2][3] (For the representation of accelerations in inertial frames, see the article Acceleration (special relativity), where concepts such as three-acceleration, four-acceleration, proper acceleration, hyperbolic motion etc. are defined and related to each other.)

A fundamental property of such a frame is the employment of the proper time of the accelerated observer as the time of the frame itself. This is connected with the clock hypothesis (which is experimentally confirmed), according to which the proper time of an accelerated clock is unaffected by acceleration, thus the measured time dilation of the clock only depends on its momentary relative velocity. The related proper reference frames are constructed using concepts like comoving orthonormal tetrads, which can be formulated in terms of spacetime Frenet–Serret formulas, or alternatively using Fermi–Walker transport as a standard of non-rotation. If the coordinates are related to Fermi–Walker transport, the term Fermi coordinates is sometimes used, or proper coordinates in the general case when rotations are also involved. A special class of accelerated observers follow worldlines whose three curvatures are constant. These motions belong to the class of Born rigid motions, i.e., the motions at which the mutual distance of constituents of an accelerated body or congruence remains unchanged in its proper frame. Two examples are Rindler coordinates or Kottler-Møller coordinates for the proper reference frame of hyperbolic motion, and Born or Langevin coordinates in the case of uniform circular motion.

In the following, Greek indices run over 0,1,2,3, Latin indices over 1,2,3, and bracketed indices are related to tetrad vector fields. The signature of the metric tensor is (-1,1,1,1).

  1. ^ Misner & Thorne & Wheeler (1973), p. 163: "Accelerated motion and accelerated observers can be analyzed using special relativity."
  2. ^ Koks (2006), p. 234. "It is sometimes said that to describe physics properly in an accelerated frame, special relativity is insufficient, and the full machinery of general relativity is necessary for the job. This is quite wrong. Special relativity is entirely sufficient to derive the physics of an accelerated frame."
  3. ^ In some textbooks the same formulas and results for flat spacetime are discussed in the framework of GR, using the historical definition that SR is restricted to inertial frames, while accelerated frames belong to the framework of GR. However, since the results are the same in terms of flat spacetime, it does not affect the content of this article. For instance, Møller (1952) discusses successive Lorentz transformations, successive inertial frames, and tetrad transport (now called Fermi–Walker transport) in §§ 46, 47 related to special relativity, while rigid references frames are discussed in section §§ 90, 96 related to general relativity.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search