Pumped-storage hydroelectricity

Diagram of the TVA pumped storage facility at Raccoon Mountain Pumped-Storage Plant in Tennessee, United States
Shaded-relief topo map of the Taum Sauk pumped storage plant in Missouri, United States. The lake on the mountain is built upon a flat surface, requiring a dam around the entire perimeter.

Pumped-storage hydroelectricity (PSH), or pumped hydroelectric energy storage (PHES), is a type of hydroelectric energy storage used by electric power systems for load balancing. The method stores energy in the form of gravitational potential energy of water, pumped from a lower elevation reservoir to a higher elevation. Low-cost surplus off-peak electric power is typically used to run the pumps. During periods of high electrical demand, the stored water is released through turbines to produce electric power. Although the losses of the pumping process make the plant a net consumer of energy overall, the system increases revenue by selling more electricity during periods of peak demand, when electricity prices are highest. If the upper lake collects significant rainfall or is fed by a river then the plant may be a net energy producer in the manner of a traditional hydroelectric plant.

Principle of the pumped storage power plant as an energy storage system

Pumped-storage hydroelectricity allows energy from intermittent sources (such as solar, wind) and other renewables, or excess electricity from continuous base-load sources (such as coal or nuclear) to be saved for periods of higher demand.[1][2] The reservoirs used with pumped storage can be quite small when contrasted with the lakes of conventional hydroelectric plants of similar power capacity, and generating periods are often less than half a day.

Pumped storage is by far the largest-capacity form of grid energy storage available, and, as of 2020, the United States Department of Energy Global Energy Storage Database reports that PSH accounts for around 95% of all active tracked storage installations worldwide, with a total installed throughput capacity of over 181 GW, of which about 29 GW are in the United States, and a total installed storage capacity of over 1.6 TWh, of which about 250 GWh are in the United States.[3] The round-trip energy efficiency of PSH varies between 70%–80%,[4][5][6][7] with some sources claiming up to 87%.[8]

The main requirement for PSH is hilly country. The global greenfield pumped hydro atlas[9] lists more than 600,000 potential sites around the world, which is about 100 times more than needed to support 100% renewable electricity. Most are closed-loop systems away from rivers. Areas of natural beauty and new dams on rivers can be avoided because of the very large number of potential sites. Some projects utilise existing reservoirs (dubbed "bluefield") such as the 350 Gigawatt-hour Snowy 2.0 scheme[10] under construction in Australia. Some recently proposed projects propose to take advantage of "brownfield" locations such as disused mines such as the Kidston project[11] under construction in Australia.[12]

Water requirements for PSH are small:[13] about 1 gigalitre of initial fill water per gigawatt-hour of storage. This water is recycled uphill and back downhill between the two reservoirs for many decades, but evaporation losses (beyond what rainfall and any inflow from local waterways provide) must be replaced. Land requirements are also small: about 10 hectares per gigawatt-hour of storage,[13] which is much smaller than the land occupied by the solar and windfarms that the storage might support. Closed loop (off-river) pumped hydro storage has the smallest carbon emissions[14] per unit of storage of all candidates for large-scale energy storage.

  1. ^ "Storage for a secure Power Supply from Wind and Sun" (PDF). Archived (PDF) from the original on 23 February 2011. Retrieved 21 January 2011.
  2. ^ Rehman, Shafiqur; Al-Hadhrami, Luai; Alam, Md (30 April 2015). "Pumped hydro energy storage system: A technological review". Renewable and Sustainable Energy Reviews. 44: 586–598. doi:10.1016/j.rser.2014.12.040. Archived from the original on 8 February 2022. Retrieved 15 November 2016 – via ResearchGate.
  3. ^ "DOE OE Global Energy Storage Database". U.S. Department of Energy Energy Storage Systems Program. Sandia National Laboratories. 8 July 2020. Archived from the original on 9 July 2021. Retrieved 12 July 2020.
  4. ^ "Energy storage - Packing some power". The Economist. 3 March 2011. Archived from the original on 6 March 2020. Retrieved 11 March 2012.
  5. ^ Jacob, Thierry (7 July 2011). "Pumped storage in Switzerland - an outlook beyond 2000" (PDF). Stucky. Archived from the original (PDF) on 7 July 2011. Retrieved 13 February 2012.
  6. ^ Levine, Jonah G. (December 2007). "Pumped Hydroelectric Energy Storage and Spatial Diversity of Wind Resources as Methods of Improving Utilization of Renewable Energy Sources" (PDF). University of Colorado. p. 6. Archived from the original (PDF) on 1 August 2014.
  7. ^ Yang, Chi-Jen (11 April 2016). Pumped Hydroelectric Storage. Duke University. ISBN 9780128034491.
  8. ^ "Energy Storage". Archived from the original on 18 November 2015. Retrieved 26 February 2017.
  9. ^ "ANU RE100 Map". re100.anu.edu.au. Retrieved 26 August 2023.
  10. ^ "About". Snowy Hydro. Retrieved 26 August 2023.
  11. ^ "250MW Kidston Pumped Storage Hydro Project". Genex Power. Retrieved 26 August 2023.
  12. ^ European Renewable Energy Network (PDF). 17 July 2019. p. 188. Archived from the original (PDF) on 17 July 2019.
  13. ^ a b Blakers, Andrew; Stocks, Matthew; Lu, Bin; Cheng, Cheng (25 March 2021). "A review of pumped hydro energy storage". Progress in Energy. 3 (2): 022003. Bibcode:2021PrEne...3b2003B. doi:10.1088/2516-1083/abeb5b. hdl:1885/296928. ISSN 2516-1083. S2CID 233653750.
  14. ^ Colthorpe, Andy (21 August 2023). "NREL: Closed-loop pumped hydro 'smallest emitter' among energy storage technologies". Energy-Storage.News. Retrieved 26 August 2023.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search