![]() | This article includes a list of general references, but it lacks sufficient corresponding inline citations. (October 2018) |
In mathematical physics, the concept of quantum spacetime is a generalization of the usual concept of spacetime in which some variables that ordinarily commute are assumed not to commute and form a different Lie algebra. The choice of that algebra varies from one theory to another. As a result of this change, some variables that are usually continuous may become discrete. Often only such discrete variables are called "quantized"; usage varies.
The idea of quantum spacetime was proposed in the early days of quantum theory by Heisenberg and Ivanenko as a way to eliminate infinities from quantum field theory. The germ of the idea passed from Heisenberg to Rudolf Peierls, who noted that electrons in a magnetic field can be regarded as moving in a quantum spacetime, and to Robert Oppenheimer, who carried it to Hartland Snyder, who published the first concrete example.[1] Snyder's Lie algebra was made simple by C. N. Yang in the same year.
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search