Artist's rendering of the accretion disc in ULAS J1120+0641, a very distant quasar containing a supermassive black hole with a mass two billion times that of the Sun[1]The Chandra X-ray image is of the quasar PKS 1127-145, a highly luminous source of X-rays and visible light about 10 billion light-years from Earth. An enormous X-ray jet extends at least a million light-years from the quasar. Image is 60 arcseconds on a side. RA 11h 30m 7.10s Dec −14° 49' 27" in Crater. Observation date: May 28, 2000. Instrument: ACIS
The term quasar originated as a contraction of "quasi-stellar [star-like] radio source"—because they were first identified during the 1950s as sources of radio-wave emission of unknown physical origin—and when identified in photographic images at visible wavelengths, they resembled faint, star-like points of light. High-resolution images of quasars, particularly from the Hubble Space Telescope, have shown that quasars occur in the centers of galaxies, and that some host galaxies are strongly interacting or merging galaxies.[5] As with other categories of AGN, the observed properties of a quasar depend on many factors, including the mass of the black hole, the rate of gas accretion, the orientation of the accretion disc relative to the observer, the presence or absence of a jet, and the degree of obscuration by gas and dust within the host galaxy.
About a million quasars have been identified with reliable spectroscopic redshifts,[6] and between 2-3 million identified in photometric catalogs.[7][8] The nearest known quasar is about 600 million light-years from Earth, while the record for the most distant known AGN is at a redshift of 10.1, corresponding to a comoving distance of 31.6 billion light-years, or a look-back time of 13.2 billion years.[9][10]
Quasar discovery surveys have shown that quasar activity was more common in the distant past; the peak epoch was approximately 10 billion years ago.[11] Concentrations of multiple quasars are known as large quasar groups and may constitute some of the largest known structures in the universe if the observed groups are good tracers of mass distribution.
^Schmidt, Maarten; Schneider, Donald; Gunn, James (1995). "Spectroscopic CCD Surveys for Quasars at Large Redshift. IV. Evolution of the Luminosity Function from Quasars Detected by Their Lyman-Alpha Emission". The Astronomical Journal. 110: 68. Bibcode:1995AJ....110...68S. doi:10.1086/117497.