RF CMOS

Die shot of a Broadcom BCM2050KMLG, an RF CMOS chip used as a WiFi 802.11g transceiver.[1] Notice the octagon-like, spiral-like structures, which can act as inductors[2] transformers and baluns.[3][4][5]
Die shot of a Marvell 88W8010 WiFi 802.11g transceiver. It has both octagon-like and square-like, spiral-like structures that can also be used as inductors.[6]

RF CMOS is a metal–oxide–semiconductor (MOS) integrated circuit (IC) technology that integrates radio-frequency (RF), analog and digital electronics on a mixed-signal CMOS (complementary MOS) RF circuit chip.[7][8] It is widely used in modern wireless telecommunications, such as cellular networks, Bluetooth, Wi-Fi, GPS receivers, broadcasting, vehicular communication systems, and the radio transceivers in all modern mobile phones and wireless networking devices. RF CMOS technology was pioneered by Pakistani engineer Asad Ali Abidi at UCLA during the late 1980s to early 1990s, and helped bring about the wireless revolution with the introduction of digital signal processing in wireless communications. The development and design of RF CMOS devices was enabled by van der Ziel's FET RF noise model, which was published in the early 1960s and remained largely forgotten until the 1990s.[9][10] [11][12]

  1. ^ https://www.datasheetbank.com/en/pdf-view/BCM2050-Broadcom [bare URL]
  2. ^ Seong-Kyun Kim; Byung-Sung Kim (2008). "Scalable modeling of spiral inductor in 0.13μm RF CMOS process". 2008 International SoC Design Conference. doi:10.1109/SOCDC.2008.4815667. ISBN 978-1-4244-2598-3. S2CID 27842573.
  3. ^ "On Chip Transformer Design for CMOS Power Amplifiers". 2010. S2CID 195748866.
  4. ^ Han, Jiang-An; Kong, Zhi-Hui; Ma, Kai-Xue; Yeo, Kiat-Seng (2014). "CMOS 1:1 Transformer design for millimeter wave application". 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS). pp. 1–4. doi:10.1109/URSIGASS.2014.6929414. ISBN 978-1-4673-5225-3. S2CID 26756764.
  5. ^ Liwen Jing; Li, Alvin; Duona Luo; Rowell, Corbett R.; Yue, C. Patrick (2015). "Millimeter-wave 4∶1 Transformer-based balun design for CMOS RF IC's". 2015 IEEE International Wireless Symposium (IWS 2015). pp. 1–4. doi:10.1109/IEEE-IWS.2015.7164519. ISBN 978-1-4799-1928-4. S2CID 38084098.
  6. ^ High-Linearity CMOS RF Front-End Circuits. Springer. 8 February 2006. ISBN 978-0-387-23802-9.
  7. ^ "Figure 1 Summary of SiGe BiCMOS and rf CMOS technology". ResearchGate. Retrieved 2019-12-07.
  8. ^ RF CMOS Power Amplifiers: Theory, Design and Implementation. The International Series in Engineering and Computer Science. Vol. 659. Springer Science+Business Media. 2002. doi:10.1007/b117692. ISBN 0-7923-7628-5.
  9. ^ A. van der Ziel (1962). "Thermal noise in field effect transistors". Proceedings of the IRE. 50 (8): 1808–1812. doi:10.1109/JRPROC.1962.288221.
  10. ^ A. van der Ziel (1963). "Gate noise in field effect transistors at moderately high frequencies". Proceedings of the IEEE. 51 (3): 461–467. doi:10.1109/PROC.1963.1849.
  11. ^ A. van der Ziel (1986). Noise in Solid State Devices and Circuits. Wiley-Interscience.
  12. ^ T.M. Lee (2007). "The history and future of RF CMOS: From oxymoron to mainstream" (PDF). IEEE Int. Conf. Computer Design.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search