Rain attenuation frequency scaling

In communications satellite systems, rain attenuation frequency scaling is a technique implemented to model rain fade phenomena affecting a telecommunications link, both statistically and instantaneously. Accurate predictions of rain attenuation are crucial both for the proper design of a satellite communication (SatCom) system, as the detrimental impact of hydrometeors present within the troposphere, mainly rain, on radio frequency signals, can lead to system failures (commonly known as network outage periods).[1] Moreover, such analyses are essential for the implementation of adaptive fade mitigation techniques, such as uplink power control and variable rate encoding schemes, to increase the link availability.[1]

A scaling approach is particularly suitable in scenarios where the uplink and downlink, which typically share the same channel capacity and therefore operate at different frequency to avoid co-channel interference, are affected by the same rainfall event along the link. In such context, it may be advantageous to derive the attenuation due to rain at the higher frequency, called target frequency, by properly scaling concurrent attenuation measurements affecting the same link at lower frequency, called reference frequency.[2]

Furthermore, as rain attenuation measurements inherently embed key information about the rain event, such as the spatial distribution of the rain and the information on the raindrop size distribution (DSD), frequency scaling models provide an enhanced prediction accuracy if compared to statistical prediction models, which are typically fed with local pointfall rain data only. As proof, frequency scaling models applied to experimental SatCom systems operating within the geostationary orbit yield statistical errors of 12 - 15% in contrast to the 30 - 40% associated with statistical prediction models.[3]

  1. ^ a b Crane, Robert K. (1996). Electromagnetic Wave Propagation Through Rain (1st ed.). Wiley. pp. 1–3. ISBN 9780471613763.
  2. ^ L. Luini, A. Panzeri, and C. G. Riva (2020). "Enhancement of the synthetic storm technique for the prediction of rain attenuation time series at EHF". IEEE Transactions on Antennas and Propagation. 68 (7): 5592–5601.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ Final Report (March 2002). Radiowave Propagation Modelling for SatCom Services at Ku-Band and Above. R.A.Harris. p. 100. ISBN 92-9092-608-2.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search