Riparian zone

A riparian area is the transition from the aquatic area to the upland area. Vegetation is expected to change from species adapted to wetter sites near the channel to species adapted to drier sites in the upland, with a mixture of species occurring in between. In this example, an assessment of riparian function would consider the riparian areas, mixed riparian/upland areas, and aquatic area in the reach. Not all riparian areas have all of these features.[1]

A riparian zone or riparian area is the interface between land and a river or stream.[2] In some regions, the terms riparian woodland, riparian forest, riparian buffer zone, riparian corridor, and riparian strip are used to characterize a riparian zone. The word riparian is derived from Latin ripa, meaning "river bank".[3]

Riparian is also the proper nomenclature for one of the terrestrial biomes of the Earth.[4] Plant habitats and communities along the river margins and banks are called riparian vegetation, characterized by hydrophilic plants.[5] Riparian zones are important in ecology, environmental resource management, and civil engineering[6] because of their role in soil conservation, their habitat biodiversity, and the influence they have on terrestrial and semiaquatic fauna as well as aquatic ecosystems, including grasslands, woodlands, wetlands, and even non-vegetative areas.[7]

Riparian zones may be natural or engineered for soil stabilization or restoration.[8] These zones are important natural biofilters, protecting aquatic environments from excessive sedimentation, polluted surface runoff, and erosion.[9] They supply shelter and food for many aquatic animals and shade that limits stream temperature change.[10] When riparian zones are damaged by construction, agriculture or silviculture, biological restoration can take place, usually by human intervention in erosion control and revegetation.[11] If the area adjacent to a watercourse has standing water or saturated soil for as long as a season, it is normally termed a wetland because of its hydric soil characteristics. Because of their prominent role in supporting a diversity of species,[12] riparian zones are often the subject of national protection in a biodiversity action plan. These are also known as a "plant or vegetation waste buffer".[13]

Research shows that riparian zones are instrumental in water quality improvement for both surface runoff and water flowing into streams through subsurface or groundwater flow.[14][15] Riparian zones can play a role in lowering nitrate contamination in surface runoff, such as manure and other fertilizers from agricultural fields, that would otherwise damage ecosystems and human health.[16] Particularly, the attenuation of nitrate or denitrification of the nitrates from fertilizer in this buffer zone is important.[17] The use of wetland riparian zones shows a particularly high rate of removal of nitrate entering a stream and thus has a place in agricultural management.[18] Also in terms of carbon transport from terrestrial ecosystems to aquatic ecosystems, riparian groundwater can play an important role.[19] As such, a distinction can be made between parts of the riparian zone that connect large parts of the landscape to streams, and riparian areas with more local groundwater contributions.[20]

  1. ^ Dickard, M., M. Gonzalez, W. Elmore, S. Leonard, D. Smith, S. Smith, J. Staats, P. Summers, D. Weixelman, S. Wyman (2015). "Riparian area management: Proper functioning condition assessment for lotic areas". Technical Reference 1737-15. U.S. Department of the Interior, Bureau of Land Management, Denver, CO.
  2. ^ "Riparian Areas Environmental Uniqueness, Functions, and Values". Archived from the original on 11 June 2020.
  3. ^ Read "Riparian Areas: Functions and Strategies for Management" at NAP.edu. 2002. doi:10.17226/10327. ISBN 978-0-309-08295-2.
  4. ^ "Riparian Zone: Definition and Characteristics". Biology Dictionary. 17 May 2018. Retrieved 21 May 2023.
  5. ^ Read "Riparian Areas: Functions and Strategies for Management" at NAP.edu. 2002. doi:10.17226/10327. ISBN 978-0-309-08295-2.
  6. ^ Burdon, Francis J.; Ramberg, Ellinor; Sargac, Jasmina; Forio, Marie Anne Eurie; de Saeyer, Nancy; Mutinova, Petra Thea; Moe, Therese Fosholt; Pavelescu, Mihaela Oprina; Dinu, Valentin; Cazacu, Constantin; Witing, Felix; Kupilas, Benjamin; Grandin, Ulf; Volk, Martin; Rîşnoveanu, Geta (April 2020). "Assessing the Benefits of Forested Riparian Zones: A Qualitative Index of Riparian Integrity Is Positively Associated with Ecological Status in European Streams". Water. 12 (4): 1178. doi:10.3390/w12041178. hdl:1854/LU-8662065. ISSN 2073-4441.
  7. ^ "IUFRO: 8.01.05 - Riparian and coastal ecosystems / 8.01.00 - Forest ecosystem functions / 8.00.00 - Forest Environment". www.iufro.org. Retrieved 21 May 2023.
  8. ^ "Riparian Ecosystem - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 21 May 2023.
  9. ^ Gregory, Stanley V.; Swanson, Frederick J.; McKee, W. Arthur; Cummins, Kenneth W. (1991). "An Ecosystem Perspective of Riparian Zones". BioScience. 41 (8): 540–551. doi:10.2307/1311607. ISSN 0006-3568. JSTOR 1311607.
  10. ^ "Riparian zone - NatureSpots App - Let's explore Nature together". www.naturespots.net. Retrieved 22 May 2023.
  11. ^ "Riparian Zone - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 21 May 2023.
  12. ^ "The Ecology of Interfaces—Riparian Zones" (PDF). Archived (PDF) from the original on 23 November 2018. Retrieved 11 June 2020.
  13. ^ "Riparian zone - NatureSpots App - Let's explore Nature together". www.naturespots.net. Retrieved 21 May 2023.
  14. ^ Dosskey, Michael G.; Vidon, Philippe; Gurwick, Noel P.; Allan, Craig J.; Duval, Tim P.; Lowrance, Richard (April 2010). "The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams 1: T he R ole of R iparian V egetation in P rotecting and I mproving C hemical W ater Q uality in S treams". JAWRA Journal of the American Water Resources Association. 46 (2): 261–277. doi:10.1111/j.1752-1688.2010.00419.x. S2CID 1485368.
  15. ^ Tomer, Mark D.; Dosskey, Michael G.; Burkart, Michael R.; James, David E.; Helmers, Matthew J.; Eisenhauer, Dean E. (2005). "Placement of riparian forest buffers to improve water quality". In: Brooks, K.N. And Ffolliot, P.F. (Eds) Moving Agroforestry into the Mainstream. Proc. 9th N. Am. Agroforest. Conf. Rochester, MN. 12–15 June 2005.
  16. ^ Pedraza, Sara; Clerici, Nicola; Zuluaga Gaviria, Jennifer D.; Sanchez, Adriana (January 2021). "Global Research on Riparian Zones in the XXI Century: A Bibliometric Analysis". Water. 13 (13): 1836. doi:10.3390/w13131836. ISSN 2073-4441.
  17. ^ Chukwuka, Azubuike Victor; Ogbeide, Ozekeke (21 April 2021), "Riparian-Buffer Loss and Pesticide Incidence in Freshwater Matrices of Ikpoba River (Nigeria): Policy Recommendations for the Protection of Tropical River Basins", River Basin Management - Sustainability Issues and Planning Strategies, IntechOpen, ISBN 978-1-83968-131-8, retrieved 21 May 2023
  18. ^ Lowrance, Richard; Todd, Robert; Fail, Joseph; Hendrickson, Ole; Leonard, Ralph; Asmussen, Loris (1984). "Riparian Forests as Nutrient Filters in Agricultural Watersheds". BioScience. 34 (6): 374–377. doi:10.2307/1309729. ISSN 0006-3568. JSTOR 1309729.
  19. ^ Ledesma, José L. J.; Grabs, Thomas; Bishop, Kevin H.; Schiff, Sherry L.; Köhler, Stephan J. (August 2015). "Potential for long-term transfer of dissolved organic carbon from riparian zones to streams in boreal catchments". Global Change Biology. 21 (8): 2963–2979. Bibcode:2015GCBio..21.2963L. doi:10.1111/gcb.12872. PMID 25611952.
  20. ^ Leach, J. A.; Lidberg, W.; Kuglerová, L.; Peralta-Tapia, A.; Ågren, A.; Laudon, H. (July 2017). "Evaluating topography-based predictions of shallow lateral groundwater discharge zones for a boreal lake-stream system". Water Resources Research. 53 (7): 5420–5437. Bibcode:2017WRR....53.5420L. doi:10.1002/2016WR019804. S2CID 134913198.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search