S wave

Plane shear wave
Propagation of a spherical S wave in a 2d grid (empirical model)

In seismology and other areas involving elastic waves, S waves, secondary waves, or shear waves (sometimes called elastic S waves) are a type of elastic wave and are one of the two main types of elastic body waves, so named because they move through the body of an object, unlike surface waves.[1]

S waves are transverse waves, meaning that the direction of particle movement of an S wave is perpendicular to the direction of wave propagation, and the main restoring force comes from shear stress.[2] Therefore, S waves cannot propagate in liquids[3] with zero (or very low) viscosity; however, they may propagate in liquids with high viscosity.[4][5] Similarly, S waves cannot travel through gases.

The name secondary wave comes from the fact that they are the second type of wave to be detected by an earthquake seismograph, after the compressional primary wave, or P wave, because S waves travel more slowly in solids. Unlike P waves, S waves cannot travel through the molten outer core of the Earth, and this causes a shadow zone for S waves opposite to their origin. They can still propagate through the solid inner core: when a P wave strikes the boundary of molten and solid cores at an oblique angle, S waves will form and propagate in the solid medium. When these S waves hit the boundary again at an oblique angle, they will in turn create P waves that propagate through the liquid medium. This property allows seismologists to determine some physical properties of the Earth's inner core.[6]

  1. ^ "Seismology | UPSeis | Michigan Tech". Michigan Technological University. Retrieved 2023-10-07.
  2. ^ "S wave". United States Geological Survey. Archived from the original on July 22, 2021.
  3. ^ "Why can't S-waves travel through liquids?". Earth Observatory of Singapore. Retrieved 2019-12-06.
  4. ^ Greenwood, Margaret Stautberg; Bamberger, Judith Ann (August 2002). "Measurement of viscosity and shear wave velocity of a liquid or slurry for on-line process control". Ultrasonics. 39 (9): 623–630. doi:10.1016/s0041-624x(02)00372-4. PMID 12206629.
  5. ^ "Do viscous fluids support shear waves propagation?". ResearchGate. Retrieved 2019-12-06.[unreliable source?]
  6. ^ "Lecture 16 Seismographs and the earth's interior". University of Illinois at Chicago. 17 July 1997. Archived from the original on 7 May 2002. Retrieved 8 June 2010.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search