Satellite glial cell

Satellite glial cell
Satellite glial cells surround the cell bodies of sensory neurons
Details
LocationSurface of neuron bodies in sensory, sympathetic and parasympathetic ganglia
Identifiers
Latingliocytus ganglionicus
MeSHD027161
NeuroLex IDsao792373294
THH2.00.06.2.02002
Anatomical terms of microanatomy

Satellite glial cells, formerly called amphicytes,[1] are glial cells that cover the surface of neuron cell bodies in ganglia of the peripheral nervous system. Thus, they are found in sensory, sympathetic, and parasympathetic ganglia.[2][3] Both satellite glial cells (SGCs) and Schwann cells (the cells that ensheathe some nerve fibers in the PNS) are derived from the neural crest of the embryo during development.[4] SGCs have been found to play a variety of roles, including control over the microenvironment of sympathetic ganglia.[3] They are thought to have a similar role to astrocytes in the central nervous system (CNS).[3] They supply nutrients to the surrounding neurons and also have some structural function. Satellite cells also act as protective, cushioning cells. Additionally, they express a variety of receptors that allow for a range of interactions with neuroactive chemicals.[5] Many of these receptors and other ion channels have recently been implicated in health issues including chronic pain[6] and herpes simplex.[7] There is much more to be learned about these cells, and research surrounding additional properties and roles of the SGCs is ongoing.[8]

  1. ^ Krstić, Radivoj V. (1985). "Glia of the Central Nervous System. Ependymal Cells". General Histology of the Mammal. Springer. pp. 302–303. doi:10.1007/978-3-642-70420-8_147. ISBN 978-3-642-70420-8.
  2. ^ Hanani M (June 2005). "Satellite glial cells in sensory ganglia: from form to function" (PDF). Brain Res. Brain Res. Rev. 48 (3): 457–76. doi:10.1016/j.brainresrev.2004.09.001. PMID 15914252. S2CID 5316025.
  3. ^ a b c Hanani M (September 2010). "Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function". Brain Res Rev. 64 (2): 304–27. doi:10.1016/j.brainresrev.2010.04.009. PMID 20441777. S2CID 11833205.
  4. ^ Hall AK; Landis SC (September 1992). "Division and migration of satellite glia in the embryonic rat superior cervical ganglion". J. Neurocytol. 21 (9): 635–47. doi:10.1007/bf01191725. PMID 1403009. S2CID 42893326.
  5. ^ Shinder V; Devor M (September 1994). "Structural basis of neuron-to-neuron cross-excitation in dorsal root ganglia". J. Neurocytol. 23 (9): 515–31. doi:10.1007/bf01262054. PMID 7815085. S2CID 37909973.
  6. ^ Villa G; Fumagalli M; Verderio C; Abbracchio MP; Ceruti S (February 2010). "Expression and contribution of satellite glial cells purinoceptors to pain transmission in sensory ganglia: an update". Neuron Glia Biol. 6 (1): 31–42. doi:10.1017/S1740925X10000086. PMID 20604978.
  7. ^ Levin MJ; Cai GY; Manchak MD; Pizer LI (June 2003). "Varicella-zoster virus DNA in cells isolated from human trigeminal ganglia". J. Virol. 77 (12): 6979–87. doi:10.1128/jvi.77.12.6979-6987.2003. PMC 156183. PMID 12768016.
  8. ^ Hanani M (February 2010). "Satellite glial cells: more than just 'rings around the neuron'". Neuron Glia Biol. 6 (1): 1–2. doi:10.1017/S1740925X10000104. PMID 20604976.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search