Satisfiability modulo theories

In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable. It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings. The name is derived from the fact that these expressions are interpreted within ("modulo") a certain formal theory in first-order logic with equality (often disallowing quantifiers). SMT solvers are tools that aim to solve the SMT problem for a practical subset of inputs. SMT solvers such as Z3 and cvc5 have been used as a building block for a wide range of applications across computer science, including in automated theorem proving, program analysis, program verification, and software testing.

Since Boolean satisfiability is already NP-complete, the SMT problem is typically NP-hard, and for many theories it is undecidable. Researchers study which theories or subsets of theories lead to a decidable SMT problem and the computational complexity of decidable cases. The resulting decision procedures are often implemented directly in SMT solvers; see, for instance, the decidability of Presburger arithmetic. SMT can be thought of as a constraint satisfaction problem and thus a certain formalized approach to constraint programming.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search